• Title/Summary/Keyword: SUMT Method

Search Result 44, Processing Time 0.032 seconds

Optimum Midship Section Design of Hatchcoverless Container Ship (무개형(無蓋型) 콘테이너선(船)의 중앙단면(中央斷面) 최적구조설계(最適構造設計))

  • Kim, K.S.;Jong, H.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.84-90
    • /
    • 1997
  • The paper is mainly concerned with the applications tn develop an optimum structural design procedure for hatchcoverless container ship. L.R rules are applied to determine the scantlings of the longitudinal members. As for an object function of midship section design, the total sectional area of all the longitudinal members for midship section is selected. The SUMT procedure combined with direct search method is applied to the solution of nonlinear optimum design problem to find a optimum midship section arrangement. The results of optimization study show that the weight of model ship may be saved about 8.0% per unit length.

  • PDF

Optimum Design of Greenhouse Structures Using Continuous and Discrete Optimum Algorithms (연속 및 이산화 최적알고리즘에 의한 단동온실구조의 최적설계)

  • Park, Choon-Wook;Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.199-206
    • /
    • 2005
  • In paper the discrete optimum design program was developed using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms. In this paper, the objective function is the weight of structures and the constraints are limits state design limits method. The design variables are diameter and thick of steel pipe. Design examples are given to show the applicability of the optimum design using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms of this study.

  • PDF

The Section Optimization of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 단면최적화)

  • 노금래;김만철;박선규;이인원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.718-723
    • /
    • 1998
  • The program which could determine cross-sectional dimension of the prestressed concrete box girder bridges at the stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost required in the design of box girder bridges and the construction with the full staging method. Objective cost function consisted of six independent variables such as height of cross-section, jacking force and thickness of web and bottom flange. The SUMT(Sequntial Unconstrained minimization Technique) was used to solve the constrained nonlinear minimization optimal problem. Using the program developed in this study, optimum design was performed for existing bridges with one cell cross section of constant depth. The result verify the compatibility of the program.

  • PDF

Comparative studies on numerical optimal design techniques (수치해석에 의한 최적화 설계 기법의 비교 연구)

  • 조선휘;박종근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 1982
  • Computer codes on two numerical optimization methods-Sequentially Unconstrained Minimization Technique (SUMT) and Gradient Projection Method-are constructed and tested with several test problems. Design formulation of tension - compression coil spring is set up and the solution is obtained. Consequently, the feature, the advantage and the limitation of these methods, made clear through the tests, are discussed.

  • PDF

Optimum Preliminary Ship Design Technique by Using Sophisticated Sequential Linear Approximation Method -Development and Application of User Oriented Design Optimization Language- (고성능 순차적 선형화 방법을 이용한 선박 최적 초기설계 기법 -최적화 설계 전용 언어의 개발 및 응용-)

  • K.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.3
    • /
    • pp.35-45
    • /
    • 1988
  • This paper presents a sophisticated Sequential Linear Approximation Method(SLAM) to solve nonlinear optimization problem and the performance of this method is compared with those of the Penalty Function Method(SUMT), Tangent Search Method(TSM) and Flexible Tolerance Method(FTM). To improve the convenience and flexibility in using the proposed SLAM, an user oriented design optimization language is developed and the application examples are shown for the optimization of propeller principal dimensions and the optimization of bulk carrier principal particulars.

  • PDF

Sensitivita Analysis and Optimal desing of plane Vehicle Frame Structures (평면 차체프레임구조물의 민감도해석 및 최적설계)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.74-81
    • /
    • 1996
  • This paper is to estimate sizing design sensitivity of linear and nonlinear vehicle frame structure using structural ananlysis result from ANSYS. Using design sensitivity results, optimal design of plane vehicle frame structure with buckling constraint is carried out the gradient projection method. Optimal design results are compares gradient projection method resrult with SUMT result.

  • PDF

A Study on the Optimal Design of Reinforced Concrete Frames Using SUMT (SUMT 법(法)을 이용(利用)한 철근(鐵筋)콘크리트 뼈대구조물(構造物)의 최적설계(最適設計)에 관한 연구(研究))

  • Jung, Young Chae;Lee, Qyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.27-48
    • /
    • 1984
  • This study is conserned with the optimization of reinforced concrete frames using limit state design theory. Formulations of the optimal design for reinforced concrete frame based on the limit state theory turn out to be the nonlinear programming problems which have to deal with the required steel area, the width and effective height of the beam and column section and the moment reduction factor as the design variables. The objective function is formulated as the total construction cost which considers the costs of steel, concrete and forming for the reinforced concrete frames, and the basic constraints are imposed upon both ultimate and serviciability limit state concepts. Also, the stress blocks assumpted in CP110 and Hognestad et al. theory are applied to analysis an ultimate resistant section force for the ultimate limit state and only the criteria of CP110 are used for serviciability limit state. The optimized technique which is applied to solve the nonlinear programming problems for the optimization of reinforced concrete frames is SUMT utilizing the modified Newton-Raphson method. This algorithm is used to test for the two reinforced concrete frames, and then is compared and analysized with the numerical results of reference(10) to examine its convergence, applicability and stability under the same conditions. The results of this study are discussed about the economy comparision of the optimal values for CP110 and Hognestad et al., and the applicability, stability, convergence and validity of this algorithm used herein through the numerical analyses.

  • PDF

Minimum Weight Desing of Midship Structure Using Optimization Technuque (최적화 기법을 이용한 선체중앙단면의 최소중량설계)

  • J.G.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.4
    • /
    • pp.46-54
    • /
    • 1980
  • The ship structural design problem is formulated as a general nonlinear optimization problem with constraints. Characteristics of the general structural problems and various optimization techniques are discussed, with special emphasis on penalty function method for constrained problems. A simple example of the solution of a midship structure design of cargo vessel, which complies with the rules of the Korean Register of Shipping is shown using SUMT-exterior method with some search methods.

  • PDF

The size and shape optimization of plane trusses using the multi-levels method (다단계 분할기법에 의한 평면트러스의 단면치수 및 형상 최적화)

  • Pyeon, Hae-Wan;Oh, Kyu-Rak;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.515-525
    • /
    • 2000
  • The purpose of this paper was to develop size & shape optimization programming algorithm of plane trusses. The optimum techniques applied in this study were extended penalty method of Sequential Unconstrained Minimization Techniques(SUMT) and direct search method with multi-variables proposed by Hooke & Jeeves. Upper mentioned two methods were used iteratively at each level of size and shape optimization routines. The design variables of size optimization were circular steel tube(structural member) diameter and thickness, those of shape optimization were joint coordinates, and the objective function was represented as total weight of truss. During the optimum design, two level procedures of size and shape optimization were interacted iteratively until the final optimum values were attained. At the previous studies about shape optimization of truss, the member sectional areas and coordinates were applied as design variables. So that they could not apply the buckling effect of compression member. In this paper, actual sizes of member and nodal coordinates are used as design variables to consider the buckling effect of compression member properly.

  • PDF

Optimal Strengthening in RC Hollow Slab Bridges Using External Prestressing (외부 프리스트레싱을 이용한 RC 중공슬래브교의 최적보강)

  • Park, Kyung-Sik;Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.204-211
    • /
    • 2009
  • In this study, the optimal method is applied to strengthening of RC hollow slab bridges using external prestressing. The Queen-post and King-post shapes are considered to find the effective tendon configurations. In order to achieve the objective rating factor, the optimal configurations and tendon forces are obtained by using the Sequential Unconstrained Minimization Technique (SUMT). The object function for optimal strengthening is constituted with the dimensionless function of material costs. The constraints are formulated by design specification and the rating factor. The validity of this study is presented by the analysis of the results of strengthening of the RC hollow slab bridges.