• Title/Summary/Keyword: SUMO-1

Search Result 33, Processing Time 0.025 seconds

Characterization of small ubiquitin-like modifier E3 ligase, OsSIZ1, mutant in rice (벼의 small ubiquitin-like modifier E3 ligase, OsSIZ1 돌연변이체의 특성 분석)

  • Park, Hyeong Cheol;Koo, Sung Cheol;Kim, Hun;Choi, Wonkyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.235-241
    • /
    • 2012
  • Sumoylation is a reversible conjugation process that attaches the small ubiquitin modifier (SUMO) peptide to target proteins and regulates a wide variety of cellular functions in eucaryotes. As final step of the sumoylation, SUMO E3 ligases facilitate conjugation of SUMO to target proteins. To characterize the functions of the SUMO E3 ligases in Oryza sativa, we isolated a single recessive rice SUMO E3 ligase, Ossiz1-2 mutant. In addition, we also confirmed the interaction between OsSIZ1/-2 and OsSUMO1, respectively, by using an Agrobacterium-based tobacco luciferase transient expression system. Ossiz1-2 mutant exhibited approximately 20% reduction in growth and developmental units compared with wild type. Especially, number of filled seeds and total seed weight were dramatically decreased in the Ossiz1-2 mutant rice. Thus, these results suggest that sumoylation by the OsSIZ1 as SUMO E3 ligase plays an important role in regulating growth and development in rice.

Roles of SUMO in Plants

  • Park, Bong-Soo;Seo, Hak-Soo
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The covalent conjugation of SUMO(Small Ubiquitin-related MOdifier) protein to its substrates regulates numerous cellular processes, including protein stability and activity in eukaryotes as well as in plants. In this present review, we summarize biochemical aspects of SUMO conjugation and deconjugation and the functions of SUMO and sumoylation-related proteins in Arabidopsis and other plants. In particular, we provide an overview of the roles of the SUMO in widely different biological processes including the ABA response, floral induction, pathogen defense, abiotic stresses and hormone signaling. Furthermore, we explore the possible roles of SUMO in embryo and seed development.

  • PDF

Characterization of a novel posttranslational modification in polypyrimidine tract-binding proteins by SUMO1

  • Han, Wei;Wang, Lin;Yin, Bin;Peng, Xiaozhong
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.233-238
    • /
    • 2014
  • Polypyrimidine tract-binding protein 1 (PTBP1) and its brain-specific homologue, PTBP2, are associated with pre-mRNAs and influence pre-mRNA processing, as well as mRNA metabolism and transport. They play important roles in neural differentiation and glioma development. In our study, we detected the expression of the two proteins in glioma cells and predicted that they may be sumoylated using SUMOplot analyses. We confirmed that PTBP1 and PTBP2 can be modified by SUMO1 with co-immunoprecipitation experiments using 293ET cells transiently co-expressing SUMO1 and either PTBP1 or PTBP2. We also found that SUMO1 modification of PTBP2 was enhanced by Ubc9 (E2). The mutation of the sumoylation site (Lys137) of PTBP2 markedly inhibited its modification by SUMO1. Interestingly, in T98G glioma cells, the level of sumoylated PTBP2 was reduced compared to that of normal brain cells. Overall, this study shows that PTBP2 is posttranslationally modified by SUMO1.

SUMOylation Code in Cancer Development and Metastasis

  • Kim, Keun Il;Baek, Sung Hee
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.247-253
    • /
    • 2006
  • Protein modification by small ubiquitin-like modifier (SUMO) controls diverse cellular functions of protein targets including transcription factors and coregulators mainly in the nucleus and participates in maintaining cellular homeostasis. In addition, SUMO system plays important roles in DNA damage repair and maintaining genome integrity. Thus, in some cases, the loss of control on SUMOylation or deSUMOylation processes causes a defect in maintaining homeostasis and hence gives a cue to cancer development. Furthermore, recent study showed that SUMO system is also involved in cancer metastasis. In this review, we will summarize and discuss the possible role of SUMO system in cancer development and metastasis.

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

Transmission Performance Analysis of VCCN with SUMO depending on Packet Size and Participating Number of Clients (SUMO를 이용한 VCCN에서 패킷의 크기와 참여한 클라이언트 수에 따른 전송 성능에 대한 연구)

  • Yeon, Seunguk;Chae, Ye-Eun;Kang, Seung-Seok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.285-290
    • /
    • 2018
  • Vehicular ad hoc network (VANET) is one of the future communication technologies in which it offers safe-driving information and Internet access for both drivers and passengers by communicating among cars on the road. In case of applying Content Centric Network (CCN) rather than TCP/IP over VANET, called VCCN, it can provide efficient multicast communication of shared information among participating cars as well as offer corresponding one-to-one communications. This paper introduces SUMO for simulating traffic flows, VANET for car-to-car ad hoc communications, and CCN for a future Internet architecture. In addition, it compares and analyses the transmission performance of moving cars over VCCN. According to the simulation results using SUMO and VCCN, the larger the packet size, the better the transmission performance. In addition, VCCN provides higher packet transmission rate than that of TCP/IP when the clients shares the same contents. Furthermore, the overall data reception rate exceeds the physical transmission channel rate.

Identification of Chinese Cabbage Sentrin as a Suppressor of Bax-Induced Cell Death in Yeast

  • Sawitri, Widhi Dyah;Slameto, Slameto;Sugiharto, Bambang;Kim, Kyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.600-606
    • /
    • 2012
  • Studies into the cell death program termed apoptosis have resulted in new information regarding how cells control and execute their own demise, including insights into the mechanism by which death-preventing factors can inhibit Bax-induced caspase activation. We investigated high temperature stress-induced cell death in Brassica rapa. Using a yeast functional screening from a Brassica rapa cDNA library, the BH5-127 EST clone encoding an apoptotic suppressor peptide was identified. However, a phylogenic tree showed that BH5-127 clusters within a clade containing SUMO-1 (Small Ubiquitin-like Modifier-1). BH5-127 was confirmed similar to have function to SUMO-1 as Fas suppression. Expression of BH5-127 showed that substantial suppression of cell death survived on SD-galactose-$Leu^-$-$Ura^-$ medium. The results suggest that BrSE ($\underline{B}$rassica rapa $\underline{S}$entrin $\underline{E}$ST, BH5-127) is one of the important regulatory proteins in programming cell death, especially in the seedling stage of Chinese cabbage.

Environmental Effects of Traffic Calming Devices on Residential Area using SUMO

  • Sugimachi, Nobuyuki;Yoo, Jaesoo;Hayashida, Yukuo
    • International Journal of Contents
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Recently, the number of traffic accidents on trunk roads tends to decrease due to the performance improvement of passenger vehicles. In the commuter rush hour of morning and evening, vehicles via residential road increases without going along trunk roads. Therefore, there are many traffic accidents of pedestrians (or bicycles) and vehicles on residential roads. In order to safeguard residents against traffic accidents, traffic calming devices (TCD), such as chicane, speed hump, and school zone, etc. have been introduced. Investigating these effects repeatedly is not easy since many times and efforts are required, such as observed at the place actually. In this paper, the effects of TCDs in residential areas, such as noise, speed, and emission of a vehicle, using Simulation of Urban Mobility (SUMO) are examined. As a result, it is found that it is possible to reduce the speed of the vehicle by TCD, and the level of noise at the location behind TCD becomes higher than the level of noise at the location of TCD implemented.