SUMOylation Code in Cancer Development and Metastasis

  • Kim, Keun Il (Department of Biological Sciences, Research Center for Women's Disease, Sookmyung Womens University) ;
  • Baek, Sung Hee (Department of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University)
  • Received : 2006.11.09
  • Accepted : 2006.11.20
  • Published : 2006.12.31

Abstract

Protein modification by small ubiquitin-like modifier (SUMO) controls diverse cellular functions of protein targets including transcription factors and coregulators mainly in the nucleus and participates in maintaining cellular homeostasis. In addition, SUMO system plays important roles in DNA damage repair and maintaining genome integrity. Thus, in some cases, the loss of control on SUMOylation or deSUMOylation processes causes a defect in maintaining homeostasis and hence gives a cue to cancer development. Furthermore, recent study showed that SUMO system is also involved in cancer metastasis. In this review, we will summarize and discuss the possible role of SUMO system in cancer development and metastasis.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, KOSEF

References

  1. Baek, S. H. (2006) A novel link between SUMO modification and cancer metastasis. Cell Cycle 5, 1492−1495 https://doi.org/10.4161/cc.5.14.3008
  2. Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K., et al. (2002) Exchange of N-CoR corepressor and Tip60 coactivaotr complexes links gene expression by NF-kB and beta-amyloid precursor protein. Cell 110, 55−67 https://doi.org/10.1016/S0092-8674(02)00809-7
  3. Binda, O., Roy, J. S., and Branton, P. E. (2006) RBP1 family proteins exhibit SUMOylation-dependent transcriptional repression and induce cell growth inhibition reminiscent of senescence. Mol. Cell Biol. 26, 1917−1931
  4. Bode, A. M. and Dong, Z. (2004) Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 4, 793−805 https://doi.org/10.1038/nrc1455
  5. Bossis, G., Malnou, C. E., Farras, R., Andermarcher, E., Hipskind, R., et al. (2005) Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol. Cell Biol. 25, 6964−6979 https://doi.org/10.1128/MCB.25.16.6964-6979.2005
  6. Brooks, C. L. and Gu, W. (2006) p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307−315 https://doi.org/10.1016/j.molcel.2006.01.020
  7. Callewaert, L., Verrijdt, G., Haelens, A., and Claessens, F. (2004) Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol. Endocrinol. 18, 1438−1449 https://doi.org/10.1210/me.2003-0313
  8. Chen, L. and Chen, J. (2003) MDM2-ARF complex regulates p53 sumoylation. Oncogene 22, 5348−5357 https://doi.org/10.1038/sj.onc.1206851
  9. Cheng, J., Wang, D., Wang, Z., and Yeh, E. T. (2004) SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol. Cell Biol. 24, 6021−6028 https://doi.org/10.1128/MCB.24.13.6021-6028.2004
  10. Cheng, J., Bawa, T., Lee, P., Gong, L., and Yeh, E. T. (2006) Role of desumoylation in the development of prostate cancer. Neoplasia. 8, 667−676 https://doi.org/10.1593/neo.06445
  11. Choi, S. J., Chung, S. S., Rho, E. J., Lee, H. W., Lee, M. H., et al. (2006) Negative modulation of RXRalpha transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. J. Biol. Chem. 281, 30669−30677 https://doi.org/10.1074/jbc.M604033200
  12. Dai, M. S., Jin, Y., Gallegos, J. R., and Lu, H. (2006). Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. Neoplasia 8, 630−644 https://doi.org/10.1593/neo.06334
  13. Desterro, J. M., Thomson, J., and Hay, R. T. (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 417, 297−300
  14. Desterro, J. M., Rodriguez, M. S., and Hay, R. T. (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2, 233−239 https://doi.org/10.1016/S1097-2765(00)80133-1
  15. Desterro, J. M., Rodriguez, M. S., Kemp, G. D., and Hay, R. T. (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618−10624 https://doi.org/10.1074/jbc.274.15.10618
  16. Devoy, A., Soane, T., Welchman, R., and Mayer, R. J. (2005) The ubiquitin-proteasome system and cancer. Essays Biochem. 41, 187−203 https://doi.org/10.1042/EB0410187
  17. Doniels-Silvers, A. L., Nimri, C. F., Stoner, G. D., Lubet, R. A., and You, M. (2002) Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin. Cancer Res. 8, 1127−1138
  18. Feigelson, H. S. and Henderson, B. E. (1996) Estrogens and breast cancer. Carcinogenesis 17, 2279−2284
  19. Gao, M. and Karin, M. (2005). Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol. Cell 19, 581−593 https://doi.org/10.1016/j.molcel.2005.08.017
  20. Gong, L., Li, B., Millas, S., and Yeh, E. T. (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448, 185−189 https://doi.org/10.1016/S0014-5793(99)00367-1
  21. Gong, L., Millas, S., Maul, G. G., and Yeh, E. T. (2000) Differential regulation of sentrinized proteins by a novel sentrinspecific protease. J. Biol. Chem. 275, 3355−3359
  22. Gong, Z., Brackertz, M., and Renkawitz, R. (2006) SUMO modification enhances p66-mediated transcriptional repression of the Mi-2/NuRD complex. Mol. Cell Biol. 26, 4519−4528 https://doi.org/10.1128/MCB.00409-06
  23. Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S. E., et al. (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462−6471 https://doi.org/10.1093/emboj/18.22.6462
  24. Harvey, M., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., Bradley, A., et al. (1993) Spontaneous and carcinogeninduced tumorigenesis in p53-deficient mice. Nat. Genet. 5, 225−229 https://doi.org/10.1038/ng1193-225
  25. Hay, R. T. (2005) SUMO: a history of modification. Mol. Cell 18, 1−12 https://doi.org/10.1016/j.molcel.2005.03.012
  26. Hochstrasser, M. (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5−8 https://doi.org/10.1016/S0092-8674(01)00519-0
  27. Hochstrasser, M. (2006) Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27−34 https://doi.org/10.1016/j.cell.2005.12.025
  28. Honda, R., Tanaka, H., and Yasuda, H. (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25−27
  29. Hsu, Y. H., Sarker, K. P., Pot, I., Chan, A., Netherton, S. J., et al. (2006) Sumoylated SnoN represses transcription in a promoter- specific manner. J. Biol. Chem. 281, 33008−33018 https://doi.org/10.1074/jbc.M604380200
  30. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H., and Miyamoto, S. (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115, 565−576 https://doi.org/10.1016/S0092-8674(03)00895-X
  31. Huang, D. T., Walden, H., Duda, D., and Schulman, B. A. (2004) Ubiquitin-like protein activation. Oncogene 23, 1958−1971 https://doi.org/10.1038/sj.onc.1207393
  32. Jacques, C., Baris, O., Prunier-Mirebeau, D., Savagner, F., Rodien, P., et al. (2005) Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab. 90, 2314−2320 https://doi.org/10.1210/jc.2004-1337
  33. Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355−382 https://doi.org/10.1146/annurev.biochem.73.011303.074118
  34. Johnson, E. S. and Blobel, G. (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799−26802 https://doi.org/10.1074/jbc.272.43.26799
  35. Johnson, E. S., Schwienhorst, I., Dohmen, R. J., and Blobel, G. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509−5519 https://doi.org/10.1093/emboj/16.18.5509
  36. Kagey, M. H., Melhuish, T. A., and Wotton, D. (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113, 127−137 https://doi.org/10.1016/S0092-8674(03)00159-4
  37. Karin, M. (2006) NF-kappaB and cancer: mechanisms and targets. Mol. Carcinog. 45, 355−361 https://doi.org/10.1002/mc.20217
  38. Karin, M. and Greten, F. R. (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749−759 https://doi.org/10.1038/nri1703
  39. Kim, K. I., Baek, S. H., Jeon, Y. J., Nishimori, S., Suzuki, T., et al. (2000) A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem. 275, 14102−14106 https://doi.org/10.1074/jbc.275.19.14102
  40. Kim, K. I., Baek, S. H., and Chung, C. H. (2002) Versatile protein tag, SUMO: its enzymology and biological function. J. Cell Physiol. 191, 257−268
  41. Kim, J. H., Kim, B., Cai, L., Choi, H. J., Ohgi, K. A., et al. (2005) Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 434, 921− 926 https://doi.org/10.1038/nature03452
  42. Kim, J. H., Choi, H. J., Kim, B., Kim, M. H., Lee, J. M., et al. (2006) Roles of sumoylation of a reptin chromatinremodelling complex in cancer metastasis. Nat. Cell Biol. 8, 631−639 https://doi.org/10.1038/ncb1415
  43. Kotaja, N., Karvonen, U., Janne, O. A., and Palvimo, J. J. (2002a) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell Biol. 22, 5222−5234 https://doi.org/10.1128/MCB.22.14.5222-5234.2002
  44. Kotaja, N., Karvonen, U., Janne, O. A., and Palvimo, J. J. (2002b) The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J. Biol. Chem. 277, 30283−30288 https://doi.org/10.1074/jbc.M204768200
  45. Kwek, S. S., Derry, J., Tyner, A. L., Shen, Z., and Gudkov, A. V. (2001) Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20, 2587−2599 https://doi.org/10.1038/sj.onc.1204362
  46. Lee, M. H., Lee, S. W., Lee, E. J., Choi, S. J., Chung, S. S., et al. (2006) SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat. Cell Biol. (Published online: 05 November 2006 | doi:10.1038/ncb1512)
  47. Li, J., Peet, G. W., Balzarano, D., Li, X., Massa, P., et al. (2001) Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J. Biol. Chem. 276, 18579−18590 https://doi.org/10.1074/jbc.M100846200
  48. Mabb, A. M., Wuerzberger-Davis, S. M., and Miyamoto, S. (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat. Cell Biol. 8, 986−993 https://doi.org/10.1038/ncb1458
  49. Melchior, F. (2000) SUMO--nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591−626 https://doi.org/10.1146/annurev.cellbio.16.1.591
  50. Melchior, F., Schergaut, M., and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612−618 https://doi.org/10.1016/j.tibs.2003.09.002
  51. Mo, Y. Y. and Moschos, S. J. (2005) Targeting Ubc9 for cancer therapy. Expert. Opin. Ther. Targets. 9, 1203−1216 https://doi.org/10.1517/14728222.9.6.1203
  52. Mo, Y. Y., Yu, Y., Theodosiou, E., Rachel Ee, P. L., and Beck, W. T. (2005) A role for Ubc9 in tumorigenesis. Oncogene 24, 2677−2683 https://doi.org/10.1038/sj.onc.1208210
  53. Motohashi, H., Katsuoka, F., Miyoshi, C., Uchimura, Y., Saitoh, H., et al. (2006) MafG sumoylation is required for active transcriptional repression. Mol. Cell Biol. 26, 4652−4663 https://doi.org/10.1128/MCB.02193-05
  54. Muller, S., Berger, M., Lehembre, F., Seeler, J. S., Haupt, Y., et al. (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem. 275, 13321−13329 https://doi.org/10.1074/jbc.275.18.13321
  55. Nakayama, K. I. and Nakayama, K. (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369−381 https://doi.org/10.1038/nrc1881
  56. Nalepa, G., Rolfe, M., and Harper, J. W. (2006) Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596−613 https://doi.org/10.1038/nrd2056
  57. Nishida, T. and Yasuda, H. (2002) PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem. 277, 41311−41317 https://doi.org/10.1074/jbc.M206741200
  58. Nishida, T., Tanaka, H., and Yasuda, H. (2000) A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur. J. Biochem. 267, 6423−6427 https://doi.org/10.1046/j.1432-1327.2000.01729.x
  59. Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N., and Yasuda, H. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun. 254, 693−698 https://doi.org/10.1006/bbrc.1998.9995
  60. Pan, Z. Q., Kentsis, A., Dias, D. C., Yamoah, K., and Wu, K. (2004) Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985−1997 https://doi.org/10.1038/sj.onc.1207414
  61. Pichler, A., Gast, A., Seeler, J. S., Dejean, A., and Melchior, F. (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109−120
  62. Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503−533
  63. Pickart, C. M. and Eddins, M. J. (2004) Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55−72 https://doi.org/10.1016/j.bbamcr.2004.09.019
  64. Poukka, H., Karvonen, U., Janne, O. A., and Palvimo, J. J. (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci. USA 97, 14145−14150
  65. Rodriguez, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., et al. (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455−6461 https://doi.org/10.1093/emboj/18.22.6455
  66. Rodriguez, M. S., Dargemont, C., and Hay, R. T. (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654−12659 https://doi.org/10.1074/jbc.M009476200
  67. Rosendorff, A., Sakakibara, S., Lu, S., Kieff, E., Xuan, Y., et al. (2006) NXP-2 association with SUMO-2 depends on lysines required for transcriptional repression. Proc. Natl. Acad. Sci. USA 103, 5308−5313
  68. Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., et al. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088−3103 https://doi.org/10.1101/gad.944801
  69. Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252−6258 https://doi.org/10.1074/jbc.275.9.6252
  70. Schmidt, D. and Muller, S. (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl. Acad. Sci. USA 99, 2872−2877
  71. Schwarz, S. E., Matuschewski, K., Liakopoulos, D., Scheffner, M., and Jentsch, S. (1998) The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc. Natl. Acad. Sci. USA 95, 560−564
  72. Sentis, S., Le, R. M., Bianchin, C., Rostan, M. C., and Corbo, L. (2005) Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity. Mol. Endocrinol. 19, 2671−2684 https://doi.org/10.1210/me.2005-0042
  73. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., et al. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368−35374 https://doi.org/10.1074/jbc.M104214200
  74. Tiefenbach, J., Novac, N., Ducasse, M., Eck, M., Melchior, F., et al. (2006) SUMOylation of the corepressor N-CoR modulates its capacity to repress transcription. Mol. Biol. Cell 17, 1643−1651 https://doi.org/10.1091/mbc.E05-07-0610
  75. Ulrich, H. D. (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15, 525−532 https://doi.org/10.1016/j.tcb.2005.08.002
  76. Welchman, R. L., Gordon, C., and Mayer, R. J. (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599−609 https://doi.org/10.1038/nrm1700
  77. Wuerzberger-Davis, S. M., Nakamura, Y., Seufzer, B. J., and Miyamoto, S. (2006) NF-kappaB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene (online publication 24 July 2006; doi: 10.1038/sj.onc.1209815)
  78. Xirodimas, D. P., Chisholm, J., Desterro, J. M., Lane, D. P., and Hay, R. T. (2002) P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Lett. 528, 207−211 https://doi.org/10.1016/S0014-5793(02)03310-0
  79. Yeh, E. T., Gong, L., and Kamitani, T. (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1−14 https://doi.org/10.1016/S0378-1119(00)00139-6
  80. Zhang, H., Saitoh, H., and Matunis, M. J. (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell Biol. 22, 6498−6508