• Title/Summary/Keyword: STBC:Space-time Block Code

Search Result 83, Processing Time 0.026 seconds

A Cooperative Signaling Structure using the ¾ - rate STBC in Wireless Networks with Rayleigh Fading Channels (레일레이 페이딩 채널의 무선 네트워크에서 ¾ STBC를 사용한 협력신호 구조에 관한 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Choi Jeong-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.865-872
    • /
    • 2006
  • Cooperative communications (CC) have received a great deal of attention recently as an efficient way to obtain the spatial diversity without physical arrays. Thus, space-time block codes (STBC) which are well-known for use in co-located multi-antenna systems can be still utilized for single-antenna users in a distributed fashion. In this paper, we propose a cooperative signaling structure using the $\frac{3}{4}$-rate STBC and derive closed-form BER expression which takes the effect of network geometry and transmit power constraint into account. A variety of simulated and numerical results demonstrated the cooperation considerably outperforms the direct transmission when partners are located in appropriate positions.

Performance Enhancement by Interference Cancellation Scheme in Transmit Diversity using STBC over Time Selective Fading Channel (Time Selective Fading 채널 환경에서 STBC를 이용하는 송신 다이버시티에서 간섭제거기법에 의한 성능 개선)

  • Kim, Jang-Wook;Jin, Yang-Hee;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.239-242
    • /
    • 2003
  • Transmit diversity using STBC(Space Time Block Code) provides the same diversity gain as MRRC(Maximal Ratio Receiver Combining), when the fading channel is constant across two consecutive symbols. But, when the channel condition is changed for the two consecutive symbols, the transmit diversity using STBC does not offer good performance due to the large doppler shift. In this paper, we have proposed a interference cancellation scheme for performance enhancement in transmit diversity using STBC over time selective fading channel. Simulation results for various doppler shift rates are presented for the transmit diversity using the proposed scheme.

  • PDF

On the Performance of STBC/Beamforming Systems for High Speed Trains (고속 열차를 위한 다중안테나 시스템 성능 분석)

  • 이철진;신승훈;최규형;황현철;곽경섭
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.400-405
    • /
    • 2004
  • Recently, MIMO communications are regarded as one of the most promising emerging wireless technologies. This paper investigates MIMO wireless systems and their applications in a railway communication system. We firstly discuss railway communication environments including propagation characteristics and radio channel modeling. Next, we consider channel estimate methods, which is a crucial issue under rapidly varying channel condition due to the movement of trains. Channel estimation methods for MIMO systems are addressed and the effect of estimation error is studied. We also have performed simulations for transmit beamforming system and STBC(Space-time block coding) to investigate the performance of MIMO schemes in railway systems.

Performance of the Concatenated System of MTCM Codes with STBC on Fast Rayleigh Fading Channels (빠른 레일리 페이딩채널에서 MTCM 부호와 STBC를 결합한 시스템의 성능평가)

  • Jin, Ik-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.141-148
    • /
    • 2009
  • Space-time block codes (STBC) have no coding gain but they provide a full diversity gain with relatively low encoder/decoder complexity. Therefore, STBC should be concatenated with an outer code which provides an additional coding gain. In this paper, we consider the concatenation of multiple trellis-coded modulation (MTCM) codes with STBC for achieving significant coding gain with full antenna diversity. Using criteria of equal transmit power, spectral efficiency and the number of trellis states, the performance of concatenated scheme is compared to that of previously known space-time trellis codes (STTC) in terms of frame error rate (FER). Simulation results show that MTCM codes concatenated with STBC offer better performance on fast Rayleigh fading channels, than previously known STTC with two transmit antennas and one receive antenna.

  • PDF

Double Binary Turbo Coded Data Transmission of STBC UWB Systems for U-Healthcare Applications

  • Kim, Yoon-Hyun;Kim, Eun-Cheol;Kim, Jin-Young
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, we analyze and simulate performance of space time block coded (STBC) binary pulse amplitude modulation-direct sequence (BPAM-DS) ultra-wideband (UWB) systems with double binary turbo code in indoor environments for various ubiquitous healthcare (u-healthcare) applications. Indoor wireless channel is modeled as a modified Saleh and Valenzuela (SV) model proposed as a UWB indoor channel model by the IEEE 802.15.SG3a in July 2003. In the STBC encoding process, an Alamouti algorithm for real-valued signals is employed because UWB signals have the type of real signal constellation. It is assumed that the transmitter has knowledge about channel state information. From simulation results, it is shown that the STBC scheme does not have an influence on improving bit error probability performance of the BPAM-DS UWB systems. It is also confirmed that the results of this paper can be applicable for u-healthcare applications.

Performance Evaluation of Channel Estimation and Interference Cancellation Techniques for Multiuser with Transmitter Diversity System (송신 다이버시티를 가진 다중 사용자 시스템에서 채널 추정 및 간섭 제거 기법들의 성능 평가)

  • 유형준;이상문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.641-650
    • /
    • 2002
  • Space-Time Block Code(STBC) provides full diversity gains with simple linear processing at the receiver. Interference Cancellation(IC) techniques in system using STBC improve the capacity and performance of wireless systems with co-channel users. Various IC techniques, Minimum Mean-Squared Error(MMSE) and Zero-Forcing(ZF) algorithms in system with STBC were proposed in the literatures in multiuser environment. The performance of these IC techniques were simulated by assuming perfect channel state information(CSI) of multiuser at the receiver. However, in practice it is difficult to know perfect CSI of multiuser at the receiver. Thus, channel estimation scheme is essential at the receiver. Also SNR estimation scheme is required to operate the MMSE IC algorithm. In this paper, we present estimation schemes of CSI and SNR using training sequences. Through extensive computer simulation, we compare and evaluate the performance of IC techniques using the proposed CSI and SNR estimation techniques.

Interference Cancellation for QO-STBC with EVD (EVD기법을 이용한 QO-STBC의 간섭 제거)

  • Kim, Dong Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.46-52
    • /
    • 2016
  • Quasi-Orthogonal STBC (QO-STBC) scheme is proposed conventionally achieving approximate full rate and full diversity in more than 3 transmit antenna and open-loop environmen.. But, conventional QO-STBC has disadvantage that performance degradation by interference terms of detection matrix and high decoding complexity. Recently, this interference cancellation scheme of low decoding complexity by multiplying specific rotation matrix is proposed. We propose more general interference cancellation scheme by using EVD(Eigenvalue Decompostion).

Performance Evaluation of Beamformer for STBC-OFDM Systems (STBC-OFDM 시스템에서 빔형성 기법의 성능평가)

  • 이상문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.883-892
    • /
    • 2004
  • Recently, in order to improve high speed data transmission and spectral efficiency in wireless communication systems, the study on the combination OFDM and space-time coding is active. Also, a solution to improve system capacity in multiuser systems is to use adaptive antennas. In a system using STBC, the signals transmitted from two transmit antennas are superposed at the receive antenna and the interference between two transmit antennas of a user occures. Thus it is difficult to apply the conventional beamforming techniques for single antenna to the systems using space-time coding. In this Paper, we present the MMSE beanforming technique using training sequence for STBC-OFDM systems in reverse link and evaluate the performance by using various parameters in TU and HT channels.

New Design for Linear Complex Precoding over ABBA Quasi-Orthogonal Space-Time Block Codes

  • Ran, Rong;Yang, Jang-Hoon;An, Chan-Ho;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1062-1067
    • /
    • 2008
  • ABBA codes, a class of quasi-orthognal space-time block codes (QoSTBC) proposed by Tirkkonen and others, allow full rate and a fast maximum likelihood (ML) decoding, but do not have full diversity. In this paper, a linear complex precoder is proposed for ABBA codes to achieve full rate and full diversity. Moreover, the same diversity produce as that of orthogonal space-time block code with linear complex precoder (OSTBC-LCP) is achieved. Meanwhile, the size of the linear complex precoder can be reduced by half without affecting performance, which means the same complexity of decoding as that of the conventional ABBA code is guaranteed.

Performance of differential Space-time Block Coded MIMO System using Cyclic Delay Diversity

  • Kim, Yoon-Hyun;Yang, Jae-Soo;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.41-45
    • /
    • 2007
  • Multi-input multi-output (MIMO) system can increase data rate, capacity and bit error rate (BER) performance compare to traditional single antenna system. However MIMO technique is pointed out the problem that has high complexity to design receiver. So a recent trend of research on the MIMO system pays more attention to simplified implementation of receiver structure. In this paper, we propose differential space time block code (STBC) for MIMO system with cyclic delay diversity (CDD). This structure can provide a very close performance to that of the conventional diversity scheme with maximum likelihood (ML) detection without channel estimation block while the receiver structure is highly simplified. Bit error rate (BER) performance of the proposed system is simulated for an AWGN channel by theoretical and simulated approaches. The results of this paper can be applicable to the 4G mobile multimedia communication systems.

  • PDF