• Title/Summary/Keyword: STAP

Search Result 34, Processing Time 0.023 seconds

Spatial Filtering based STAP Algorithm for Clutter plus Jamming Suppression (재머와 클러터 억압을 위한 공간 필터링 기반 STAP 알고리즘)

  • Hoon-Gee, Yang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.524-530
    • /
    • 2022
  • When radar return contains strong jammers along with ground clutter echo, a STAP(space-time adaptive processing) algorithms tend to suppress jammer components more severely than it does the clutter. This hinders moving target detection in that the target echo is apt to be buried by clutter echo. This paper presents a two-step STAP algorithm in which the pre-suppression of jammer by the spatial filtering is applied, prior to applying the STAP algorithm. We propose how to find the coefficients of the spatial filter and show that the spatial filtering barely alter the spectra of the target and the clutter echo, having only to suppress the jammers. Finally, we simulate a STAP scenario with strong jammers and show the proposed algorithm can improve STAP performance.

Covariance Matrix Estimation with Small STAP Data through Conversion into Spatial Frequency-Doppler Plane (적은 STAP 데이터의 공간주파수-도플러 평면 변환을 이용한 공분산행렬 추정)

  • Hoon-Gee Yang
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.38-44
    • /
    • 2023
  • Performance of a STAP(space-time adaptive processing) algorithm highly depends on how closely the estimated covariance matrix(CM) resembles the actual CM by the interference in CUT(cell under test). A STAP has 2 dimensional data structure determined by the number of array elements and the number of transmitting pulses and both numbers are generally not small. Thus, to meet the degree of freedom(DOF) of the CM, a huge amount of training data is required. This paper presents an algorithm to generate virtual training data from small received data, via converting them into the data in spatial frequency-Doppler plane. We theoretically derive where the clutter exist in the plane and present the procedure to implement the proposed algorithm. Finally, with the simulated scenario of small received data, we show the proposed algorithm can improve STAP performance.

Comparison Between Simulation and Test Result of Sigma-Delta STAP (Sigma-Delta STAP의 시뮬레이션과 시험 결과 비교)

  • Kwon, Bojun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.457-463
    • /
    • 2018
  • This paper compares the results of ${\Sigma}{\Delta}-STAP$ applied to actual radar test data and simulation data. The radar received a target signal from a virtual target generator and the clutter signal from a signal generator in an anechoic chamber. The simulation data were generated from ideal baseband radar signal modeling using the same parameter as that for the test radar. The ${\Sigma}{\Delta}-STAP$ results of the test and simulation data are similar in terms of the target signal shape and noise level. The SINR(Signal-to-Interfrence-plus-Noise Ratio) loss also had similar aspects, but the simulation result shows 1~2 dB higher SINR loss than the test result. This result verified that the simulation data can be a reasonable alternative test data when the ${\Sigma}{\Delta}-STAP$ is applied.

Performance Analysis of STAP and SFAP in Jamming Environments (재밍 환경에 따른 STAP 및 SFAP 방식 성능 분석)

  • Kim, Kiyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.136-140
    • /
    • 2015
  • In this paper, a comparative studies on the STAP and SFAP were performed, which are known as representative anti-jamming technology for adaptive array antenna. As a method of estimating the weighting vector for simulation, MMSE(Minimum Mean Square Error) algorithm was commonly used and the analyses of the simulation performance in various jamming environments were presented. Especially, performance comparison between STAP and SFAP according to the jamming power J/S(Jamming to Signal Power Ratio), performance comparison in the ratio of jamming bandwidth to signal bandwidth, and performance comparison of BER between STAP and SFAP were presented.

A Prefetch Algorithm for a Mobile Host using Association Rules (연관 규칙을 이용한 이동 호스트의 선반입 알고리즘)

  • 김호숙;용환승
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.163-173
    • /
    • 2004
  • Recently, location-based services are becoming very Popular in mobile environments. In this paper, we propose a new association based prefetch algorithm (called by STAP) that efficiently supports information service based on the large quantity of spatial database in mobile environments. We apply the spatial-temporal relations that are meaningful for location-based queries in mobile environments. Moreover, STAP considers user's mobility and the weight of spatial data. The relation of services is a new aspect not considered in previous cache politics. So STAP is the first prefetch algorithm considering the spatial-temporal relations and thus the cache policy begins to gain a new dimension. We evaluate the performance of STAP and prove the efficiency of STAP.

Application Design and Performance Analysis Simulation of Sigma-Delta STAP for GMTI Mode of Airborne Radar (항공기 레이다의 GMTI 모드를 위한 Sigma-Delta STAP의 적용 설계와 성능 분석 시뮬레이션)

  • Kim, Tae-Hyung;Yoon, Jong-Suk;Jung, Jae-Hoon;Ryu, Seong-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.336-346
    • /
    • 2017
  • Applications of Sigma-Delta STAP, and a method of GMTI processing are presented for GMTI(Ground Moving Target Indication) mode of airborne radar with sigma, delta, and guard channels. We showed results of performance analyses of presented methods by clutter simulation with ICM(Internal Clutter Motion), signal processing simulation and MDV(Minimum Detectable Velocity). Presented methods for Sigma-Delta STAP and GMTI processing are easy to apply practically in GMTI mode of airborne radar without restriction by specific airborne radar system.

Performance Analysis of Pseudorange Error in STAP Beamforming Algorithm for Array Antenna

  • Lee, Kihoon;So, Hyungmin;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • The most effective method to overcome GPS jamming problem is to use an adaptive array antenna which has the capability of beamforming or nulling to a certain direction. In this paper, Space Time Adaptive Processing (STAP) beamforming algorithm of four elements array antenna will be designed and the anti-jamming performance will be analyzed. According to the analysis, the signal to noise ratio (SNR) and anti-jamming performance can be enhanced by beamforming algorithm. Also, the time tap effect of STAP algorithm will be analyzed theoretically and verified with array antenna modeling and simulation. Specially, the cautious selection of reference time tap in STAP can prevent the degradation of position accuracy performance.

ANALYSIS OF SPATIAL AND TEMPORAL ADAPTIVE PROCESSING FOR GNSS INTERFERENCE MITIGATION

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.143-148
    • /
    • 2006
  • The goal of this paper is to analyze, through simulations and experiments, GNSS interference mitigation performance under various types of antenna structures against wideband and narrowband interferences using spatial-temporal adaptive signal processing (STAP) techniques. The STAP approach, which combines spatial and temporal processing, is a viable means of GNSS array signal processing that enhancing the desired signal quality and providing protection against interference. In this paper, we consider four types of 3D antenna array structure - Uniform Linear Array (ULA), Uniform Rectangular Array (URA), Uniform Circular Array (UCA), and the Single-Ring Cylindrical Array (SRCA) under an interference environment. Analytical evaluation and simulations are performed to investigate the system performance. This is followed by simulation GPS orbits in interfered environment are used to evaluate the STAP performance. Furthermore, experiments using a 2x2 URA hardware simulator data show that with the removal of wideband and narrowband interference through the STAP techniques, the signal tracking performance can be enhanced.

  • PDF

Performance Analysis of Projection Statistics through Method of Clutter Covariance Matrix Estimation for STAP (STAP를 위한 간섭 공분산 행렬의 예측 방법에 따른 Projection Statistics의 성능 분석)

  • Kang, Sung-Yong;Kim, Kyung-Soo;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • We analyze the performance of various techniques to overcome degradation of performance of STAP caused by nonhomogeneous clutter. The performance of NHD that used to eliminate outliers from nonhomogeneous clutter is improved by using the projection statistics(PS) that is robust to multiple outliers. The method of clutter covariance matrix estimation using a median value and the conventional method are also investigated and then compared. From the simulation results of STAP, the method of clutter covariance matrix estimation using a median value shows better performance than the conventional method for the calculation of the SINR loss, and MSMI for the single target and the multiple targets regardless of the NHD methods.

Performance Analysis of Mode Switching Scheme for Reduction of Phase Distortion in GPS Anti-jamming Equipment Based on STAP Algorithm

  • Jung, Junwoo;Yang, Gi-Jung;Park, Sungyeol;Kang, Haengik;Kwon, Seungbok;Kim, Kap Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • A method that applies space-time adaptive signal processing (STAP) algorithm based on an array antenna consisting of multiple antenna elements has been known to be effective to remove wide-band jamming signals in GPS receivers. However, the occurrence of phase distortion in navigation signals has been a problem when navigation signals, from which jamming signals are removed using STAP, are supplied to global positioning system (GPS) receivers. This paper verified the navigation performance degradation as a result of phase distortion. To mitigate this phenomenon, this paper proposes a mode switching scheme, in which a bypass mode is adopted to make the best use of the tracking performance of receivers without performing signal processing when jamming signals are not present or weak, and a STAP mode is employed when jamming signals exceed the threshold value. In this paper, the mode switching scheme is proposed for two environments: when receivers are stationary, and when receivers are moving. This paper confirmed that the performance of position error improved because phase distortion could be excluded due to STAP if the bypass mode was adopted under a condition where the jamming signal power level was below the threshold value in an environment where receivers were stationary. However, this paper also observed that the navigation failed due to the instability of tracking performance of receivers due to phase distortion that occurred at the switching time, although the number of switching could be reduced dramatically by proposing a dual threshold scheme of on- and off-thresholds that switched a mode due to the array antenna characteristics of varying gains according to the jamming signal incident direction in an environment where receivers were moving. The analysis results verified that running the STAP algorithm at all times is more efficient than the mode switching, in terms of maintaining stable navigation and ensuring position error performance, to remove jamming signals in an environment where receivers were moving.