• Title/Summary/Keyword: SSR markers

Search Result 295, Processing Time 0.031 seconds

Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea (남한지역 구상나무와 분비나무 집단에서의 nSSR 표지 유전 변이)

  • Hong, Yong-Pyo;Ahn, Ji-Young;Kim, Young-Mi;Yang, Byeong-Hoon;Song, Jeong-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.577-584
    • /
    • 2011
  • To estimate level of genetic variation and genetic differentiation among populations of 3 populations in Abies koreana and 5 populations in Abies nephrolepis, 5 nSSR markers were analyzed. Except 1 locus where too many alleles were observed excessively, population genetic parameters were recalculated with 4 loci. Mean expected heterozygosities ($H_e$) were 0.292 in A. koreana and 0.220 in A. nephrolepis, respectively. In both species, positive fixation coefficient was estimated (F=0.065 for A. koreana and F=0.095 for A. nephrolepis), which suggests that there is an excess of homozygotes relative to Hardy-Weinberg expectations within populations. Relatively high degree of population differentiation was observed in A. koreana ($F_{ST}=0.063$). compared to that of A. nephrolepis ($F_{ST}=0.039$). From 3-level Hierarchical estimation of F-staticstics, only 4.9% of the genetic variation was allocated between species ($F_{PT}$), which suggested that most of genetic variation was shared between two species. On the basis of results from analysis of genetic relationships among populations, 2 populations of A. koreana (Mt. Halla and Mt. Deogyu) were genetically distinct from the populations of A. nephrolepis but a population of Mt. Jiri was allocated within a group of populations of A. nephrolepis. Populations of both species seemed to have undergone genetic drift due to gradual decrease in population size induced by global warming after the last glacier, which resulted in increase of homozygotes by inbreeding. It could be also postulated that these species might be diverged recently and It is likely that the two species have not fully speciated yet.

Needle Characteristics and Genetic Variation of Pinus pumila Natural Population in Mt. Seorak (설악산 눈잣나무 천연집단의 침엽특성과 유전변이)

  • Song, Jeong-Ho;Lim, Hyo-In;Jang, Kyung-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.517-522
    • /
    • 2012
  • This study was conducted to investigate the morphological and anatomical characteristics of needle and the genetic diversity of Pinus pumila Regel which is a unique and the southern peripheral population in South Korea. ANOVA test showed that there were significant differences among individuals within population in all 8 needle characteristics. Average characteristics of 66 individuals were 53.59 mm in needle length, 0.78 mm in needle width, 68.98 in needle index, 0.65 mm in needle thickness, 4.56 ea. in maximum stomata row, 3.80 ea. in minimum stomata row, 8.36 ea. in total stomata row and 1.71 ea. in resin canals, respectively. Resin canal per needle of this species ranged from one to three, depending on external type. Especially, arrangement types were 69.47% in two resin canals and 30.45% in a single resin canal. A total of 78 bands was generated from 9 selected I-SSR primers. The estimates of genetic variation were 61.5% in proportion of polymorphic bands (P), 1.698 in effective number of alleles ($A_e$), 0.388 in expected heterozygosity ($H_e$) and 0.567 in Shannon's information index (S.I.), respectively.

Genetic Diversity and Spatial Genetic Structure of Populus koreana Population in Mt. Odae, Korea (오대산 물황철나무(Populus koreana) 집단의 유전다양성 및 공간적 유전구조 분석)

  • Shin, Sookyung;Song, Jeong-Ho;Lim, Hyo-In;Jang, Kyung-Hwan;Hong, Kyung-Nak;Lee, Jei-Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.59-64
    • /
    • 2014
  • This study describes analysis of genetic diversity and spatial genetic structure of Korean poplar (Populus koreana Rehder) in Mt. Odae using I-SSR markers. P. koreana is a deciduous broad-leaved tree species that primarily grows in the alpine valleys of China, Russia and North Korea. In South Korea, P. koreana is found limitedly in Gangwon province. Especially, the population in Mt. Odae is located on the southern limit line, its importance is emphasized from the genetic resource conservation perspective. The Shannon's diversity (I=0.230) and the expected heterozygosity (He=0.151) were relatively low as compared with those of other plant species. Spatial autocorrelation analysis using Tanimoto's distance showed that the genetic patch was founded within 400 m. It is suggested that individual trees for ex situ conservation should be sampled with a minimum distance of 400 m between trees.

Genetic Diversity and Relationship by SSR Markers of Korean Soybean Cultivars (한국 콩 육성품종의 SSR마커에 의한 유전적 다양성과 유연관계)

  • Kim Seong-Hun;Jung Jong-Wook;Moon Jung-Kyung;Woo Sun-Hee;Cho Yong-Gu;Jong Seung-Keun;Kim Hong-Sig
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.248-258
    • /
    • 2006
  • Genetic diversity of 91 Korean soybean cultivars was assessed with 20 simple sequence repeat (SSR). Twenty SSR loci generated a total of 149 alleles. The number of alleles for each SSR locus ranged from 3 to 15 with a mean of 7.5 alleles. Genetic diversity estimated by PIC value of 91 cultivars was ranged from 0.424 to 0.905 with an average of 0.711. Cluster analysis based on Nei's genetic distances classified 91 soybean cultivars except Geomjeongkong 4 into 7 groups. The majority groups were I, IV, and VI which included 26, 24, and 18 cultivars, respectively. Obvious differences in genetic diversity appeared to be related with the released periods of cultivars and utilization type of cultivars, but not with breeding sites. Cultivars released in 1970's and in 1990's showed the lowest and the highest genetic diversities with 0.576 and 0.706, respectively. Soybean cultivars for vegetable and early maturity showed the lowest genetic diversity with 0.514, while those for soy sauce and tofu showed the highest genetic diversity with 0.691. Genetic distance between soybean cultivar groups developed before 1969 and during 1970's was the nearest, while genetic distance between those developed in 1970's and 1990's was the furthest. Cultivar group for vegetable and early maturity showed the furthest genetic distance with cultivar group for soy sauce and tofu, while it showed the nearest genetic distance with cultivar group for cooking with rice. Genetic distance was greater between soybean cultivar groups developed in Suwon and Iksan than between those developed in Milyang and Iksan.

Diversity and Geographical Relationships by SSR Marker in Subgenus Soja Originated from Korea (SSR 마커에 의한 한국 원산 Soja 아속의 다양성과 지리적 유연관계)

  • Cho Yang-Hee;Yoon Mun-Sup;Lee Jeong-Ran;Baek Hyung-Jin;Kim Chang-Yung;Kim Tae-San;Cho Eun-Gi;Lee Hee-Bong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • This study was carried out to investigate polymorphism, gene diversity, and geographical relationships of 81 Korean wild (Glycine soja) and 130 cultivated soybeans (G. max) using seven simple sequence repeat (SSR) markers. A total of 144 alleles were observed in 211 accessions with an average of 20.6. Each SSR loci showed 13 (Satt532) to 41 (Sat_074) multialleles. The range of alleles within the loci was wider in wild soybean than the cultivated soybeans. The average genetic diversity values were 0.88 and 0.69 in wild and cultivated soybeans, respectively. In a scatter diagram of wild and cultivated soybeans based on canonical discriminant analysis, CAN1 accounted for 84.2% while CAN2 did 8.5%. Two species were grouped into three: group I (G. max), group II (G. soja), and group III (complex of G. max and G. soja). The geographical relationships of wild soybean were distinguished into two groups: Gyeonggi for Group I, and Gyeongsang, Jeolla, Gangwon, and Chungcheong for Group II. Those of cultivated soybeans were distinguished into Gyeonggi, Gangwon, and Gyeongsang for Group I, and Jeolla and Chungcheong for Group II. Therefore, the geographical relationships of wild soybeans were well typified based on the ecosystems of the Korean peninsula.

High-density genetic mapping using GBS in Chrysanthemum

  • Chung, Yong Suk;Cho, Jin Woong;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.57-57
    • /
    • 2017
  • Chrysanthemum is one of the most important floral crop in Korea produced about 7 billion dollars (1 billion for pot and 6 billion for cutting) in 2013. However, it is difficult to breed and to do genetic study because 1) it is highly self-incompatible, 2) it is outcrossing crop having heterozygotes, and 3) commercial cultvars are hexaploid (2n = 6x = 54). Although low-density genetic map and QTL study were reported, it is not enough to apply for the marker assisted selection and other genetic studies. Therefore, we are trying to make high-density genetic mapping using GBS with about 100 $F_1s$ of C. boreale that is oHohhfd diploid (2n = 2x = 18, about 2.8Gb) instead of commercial culitvars. Since Chrysanthemum is outcrossing, two-way pseudo-testcross model would be used to construct genetic map. Also, genotype-by-sequencing (GBS) would be utilized to generate sufficient number of markers and to maximize genomic representation in a cost effective manner. Those completed sequences would be analyzed with TASSEL-GBS pipeline. In order to reduce sequence error, only first 64 sequences, which have almost zero percent error, would be incorporated in the pipeline for the analysis. In addition, to reduce errors that is common in heterozygotes crops caused by low coverage, two rare cutters (NsiI and MseI) were used to increase sequence depth. Maskov algorithm would also used to deal with missing data. Further, sparsely placed markers on the physical map would be used as anchors to overcome problems caused by low coverage. For this purpose, were generated from transcriptome of Chrysanthemum using MISA program. Among those, 10 simple sequence repeat (SSR) markers, which are evenly distributed along each chromosome and polymorphic between two parents, would be selected.

  • PDF

Morphological and Genetic Stability of Dormant Apple Winter Buds After Cryopreservation

  • Yi, JungYoon;Lee, GiAn;Chung, JongWook;Lee, YoungYi;Kwak, JaeGyun;Lee, SeokYoung
    • Korean Journal of Plant Resources
    • /
    • v.28 no.6
    • /
    • pp.697-703
    • /
    • 2015
  • Twenty apple germplasm accessions from the Korean Genebank were successfully cryopreserved using two-step freezing to back up genetic resources maintained by field collections. This study examined the morphological and genetic stability of cryopreserved dormant apple buds that were stored in liquid nitrogen, and then rewarmed and regrown. Whole plants were regenerated directly from dormant buds through budding without an intermediary callus phase. The cryopreserved buds produced high levels of shoot formation (76.2-100%), similar to those of noncryopreserved buds (91.3-100%), with no observed differences between cryopreserved and noncryopreserved materials. Three of the twenty cryopreserved apple germplasm accessions were used to assess morphological and genetic stability. No differences in morphological characteristics including shoot length, leaf shape, leaf width/length ratio, and root length were observed between controls (fresh control and noncryopreserved) and cryopreserved plantlets. The genetic stability of regenerants (before and after cryopreservation) was investigated using inter simple sequence repeat (ISSR) markers. The ISSR markers produced 253 bands using four primers, ISSR 810, SSR 835, ISSR 864, and ISSR 899. These markers showed monomorphic banding patterns and revealed no polymorphism between the mother plant and regenerants before and after cryopreservation, suggesting that cryopreservation using two-step freezing does not affect the genetic stability of apple germplasm. These results show that two-step freezing cryopreservation is a practical method for long-term storage of apple germplasms.

Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites

  • Pourkhaloee, Ali;Khosh-Khui, Morteza;Arens, Paul;Salehi, Hassan;Razi, Hooman;Niazi, Ali;Afsharifar, Alireza;Tuyl, Jaap van
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.875-888
    • /
    • 2018
  • Tulip (Tulipa L.) is one of the most important ornamental geophytes in the world. Analysis of molecular variability of tulips is of great importance in conservation and parental lines selection in breeding programs. Of the 70 genic microsatellites, 15 highly polymorphic and reproducible markers were used to assess the genetic diversity, structure, and relationships among 280 individuals of 36 wild and cultivated tulip accessions from two countries: Iran and the Netherlands. The mean values of gene diversity and polymorphism information content were 0.69 and 0.66, respectively, which indicated the high discriminatory power of markers. The calculated genetic diversity parameters were found to be the highest in wild T. systola Stapf (Derak region). Bayesian model-based STRU CTU RE analysis detected five gene pools for 36 germplasms which corresponded with morphological observations and traditional classifications. Based on analysis of molecular variance, to conserve wild genetic resources in some geographical locations, sampling should be performed from distant locations to achieve high diversity. The unweighted pair group method with arithmetic mean dendrogram and principal component analysis plot indicated that among wild tulips, T. systola and T. micheliana Hoog exhibited the closest relationships with cultivated tulips. Thus, it can be assumed that wild tulips from Iran and perhaps other Middle East countries played a role in the origin of T. gesneriana, which is likely a tulip species hybrid of unclear origin. In conclusion, due to the high genetic variability of wild tulips, they can be used in tulip breeding programs as a source of useful alleles related to resistance against stresses.

RGISS: Rice (Oryza sativa L. ssp. japonica) Genome Information Service System

  • Lee, Dae-Sang;Seo, Hwa-Jung;Hahn, Jang-Ho;Kong, Eun-Bae;Park, Kie-Jung
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.194-195
    • /
    • 2007
  • We have constructed the Rice Genome Information Service System (RGISS), which is an information service system of the Oryza sativa L. ssp. japonica (rice) genome, using the released version of rice Build 3.0 pseudomolecules based on the Ensembl architecture. The nonredundant library, composed of 3,360 clones of BACs, PACs, and fosmids, was used to construct supercontigs. RGISS contains 50,717 annotated genes from GenBank, 56,161 predicted genes from FgeneSH, and information on 9,587 markers, which includes STS, SSR, and EST-based RFLP. The 20,180 ESTs sequenced by the Korea National Institute of Agricultural Biotechnology (NIAB) were aligned and mapped into 168,792 exons. By gene ontology analysis, the classified protein numbers in the rice genome were 6158, 4531, and 12,364 proteins, which were mapped to molecular function, cellular component, and biological process, respectively.