DOI QR코드

DOI QR Code

Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites

  • Pourkhaloee, Ali (Department of Horticultural Science, College of Agriculture, Shiraz University) ;
  • Khosh-Khui, Morteza (Department of Horticultural Science, College of Agriculture, Shiraz University) ;
  • Arens, Paul (Department of Plant Breeding, Wageningen University) ;
  • Salehi, Hassan (Department of Horticultural Science, College of Agriculture, Shiraz University) ;
  • Razi, Hooman (Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University) ;
  • Niazi, Ali (Institute of Biotechnology, Shiraz University) ;
  • Afsharifar, Alireza (Department of Plant Protection, College of Agriculture, Shiraz University) ;
  • Tuyl, Jaap van (Department of Plant Breeding, Wageningen University)
  • Received : 2017.11.13
  • Accepted : 2018.06.14
  • Published : 2018.12.31

Abstract

Tulip (Tulipa L.) is one of the most important ornamental geophytes in the world. Analysis of molecular variability of tulips is of great importance in conservation and parental lines selection in breeding programs. Of the 70 genic microsatellites, 15 highly polymorphic and reproducible markers were used to assess the genetic diversity, structure, and relationships among 280 individuals of 36 wild and cultivated tulip accessions from two countries: Iran and the Netherlands. The mean values of gene diversity and polymorphism information content were 0.69 and 0.66, respectively, which indicated the high discriminatory power of markers. The calculated genetic diversity parameters were found to be the highest in wild T. systola Stapf (Derak region). Bayesian model-based STRU CTU RE analysis detected five gene pools for 36 germplasms which corresponded with morphological observations and traditional classifications. Based on analysis of molecular variance, to conserve wild genetic resources in some geographical locations, sampling should be performed from distant locations to achieve high diversity. The unweighted pair group method with arithmetic mean dendrogram and principal component analysis plot indicated that among wild tulips, T. systola and T. micheliana Hoog exhibited the closest relationships with cultivated tulips. Thus, it can be assumed that wild tulips from Iran and perhaps other Middle East countries played a role in the origin of T. gesneriana, which is likely a tulip species hybrid of unclear origin. In conclusion, due to the high genetic variability of wild tulips, they can be used in tulip breeding programs as a source of useful alleles related to resistance against stresses.

Keywords

Acknowledgement

Supported by : Shiraz University, Wageningen University

References

  1. Ballesteros-Mejia L, Lima NE, Lima-Ribeiro MS, Collevatti RG (2016) Pollination mode and mating system explain patterns in genetic differentiation in Neotropical plants. PLoS ONE 11:e0158660. https://doi.org/10.1371/journal.pone.0158660
  2. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of nontemplated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 1004-6:1008-1010
  3. Christenhusz MJ, Govaerts R, David JC, Hall T, Borland K, Roberts PS, Tuomisto A, Buerki S, Chas MW et al (2013) Tiptoe through the tulips: cultural history, molecular phylogenetics and classification of Tulipa (Liliaceae). Bot J Linn Soc 172:280-328 https://doi.org/10.1111/boj.12061
  4. da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FIF, de Oliveira AC (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genom. https://doi.org/10.1155/2008/412696
  5. Daniel HH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol http://sysbio.oxfordjournals. Accessed 25 Oct 2017
  6. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125-132 https://doi.org/10.1038/sj.hdy.6801001
  7. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MA (2004) Medicago truncatula EST-SSRs reveal crossspecies genetic markers for Medicago spp. Theor Appl Genet 108:414-422 https://doi.org/10.1007/s00122-003-1450-6
  8. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRU CTU RE: a simulation study. Mol Ecol 14:2611-2620 https://doi.org/10.1111/j.1365-294X.2005.02553.x
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791 https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  10. Fulton T, Chunwongse J, Tanksley S (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207-209 https://doi.org/10.1007/BF02670897
  11. Ghasemi Ghehsareh M, Salehi H, Khosh-Khui M, Niazi A (2015) Application of ISSR markers to analyze molecular relationships in Iranian jasmine (Jasminum spp.) accessions. Mol Biotechnol 57:65-74 https://doi.org/10.1007/s12033-014-9802-9
  12. Hildebrand CE, Torney DC, Wagner RP (1992) Informativeness of polymorphic DNA markers. Los Alamos Sci 20:100-102
  13. Hoog MH (1973) On the Origin of Tulipa. Lilies and other Liliaceae. The Royal Horticulture Society, London, pp 47-64
  14. Kiani M, Memariani F, Zarghami H (2012) Molecular analysis of species of Tulipa L. from Iran based on ISSR markers. Plant Syst Evol 298:1515-1522 https://doi.org/10.1007/s00606-012-0654-0
  15. Killingback S (1990) Tulips: an illustrated identifier and guide to their cultivation. Apple Press, London, pp 9-13
  16. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725-738
  17. Kutlunina NA, Polezhaeva MA, Permyakova MV (2013) Morphologic and AFLP analysis of relationships between tulip species Tulipa biebersteiniana (Liliaceae). Russ J Genet 49:401-410 https://doi.org/10.1134/S1022795413040091
  18. Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359-366 https://doi.org/10.1023/A:1025778227751
  19. Lewontin RC (1972) Testing the theory of natural selection. Nature 236:181-182 https://doi.org/10.1038/236181a0
  20. Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129 https://doi.org/10.1093/bioinformatics/bti282
  21. Marasek-Ciolakowska A, Ramanna MS, Arens P, Van Tuyl JM (2012) Breeding and cytogenetics in the genus Tulipa. Floricult Ornam Biotechnol 6:90-97
  22. MINITAB (2010) Minitab 16 statistical software. Minitab Inc., State College
  23. Montalvo AM, Williams SL, Rice KJ, Buchmann SL, Cory C, Handel SN, Nabhan GP, Primack R, Robichaux RH (1997) Restoration biology: a population biology perspective. Restor Ecol 5:277-290 https://doi.org/10.1046/j.1526-100X.1997.00542.x
  24. Nam BE, Nam JM, Kim JG (2016) Effects of habitat differences on the genetic diversity of Persicaria thunbergii. J Ecol Environ 40:11 https://doi.org/10.1186/s41610-016-0012-1
  25. Olivia BI, Pamfil D, van Heusden S, van Tuyl J, Meijer-Dekens F, Bondrea M, Sestras R, Rusu AR, Lucaci M et al (2007) AFLP as a modern technique for DNA fingerprinting and identification Tulipa cultivars. Bull Univ Agric Sci Vet Med. https://doi.org/10.15835/buasvmcn-asb:64:1-2:1931
  26. Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97:381-388
  27. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28:2537-2539 https://doi.org/10.1093/bioinformatics/bts460
  28. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959
  29. Qi-fu L, Tong O, Yan-cheng J, Cai-xia W (2008) Tulip RAPD analysis of cultivars and wild species in Xinjiang. Acta Agricult Univ Jiangxiensis 30:656-660
  30. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137-138
  31. Rungis D, Berube Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 109:1283-1294 https://doi.org/10.1007/s00122-004-1742-5
  32. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233-234 https://doi.org/10.1038/72708
  33. Shahin A, van Gurp T, Peters S, Visser R, van Tuyl J, Arens P (2012) Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genom 13:640 https://doi.org/10.1186/1471-2164-13-640
  34. Sharma R, Chowdhury VK, Jain S, Jain RK (2009) A comparative study of genetic relationships among and within male and female genotypes of dioecious Jojoba (Simmondsia chinensis L. Schneider) using RAPD and ISSR markers. Asian J Hortic 4:184-193
  35. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275-288 https://doi.org/10.3732/ajb.94.3.275
  36. Tabin Sh, Kamili AN, Ganie SA, Zargar O, Sharma V, Gupta RG (2016) Genetic diversity and population structure of Rheum species in Kashmir Himalaya based on ISSR markers. Flora 223:121-128 https://doi.org/10.1016/j.flora.2016.05.001
  37. Tang J, Vosman B, Voorrips RE, van der Linden CG, Leunissen JAM (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinform 7:438 https://doi.org/10.1186/1471-2105-7-438
  38. Tang N, Shahin A, Bijman P, Liu J, van Tuyl J, Arens P (2013) Genetic diversity and structure in a collection of tulip cultivars assessed by SNP markers. Sci Hortic 161:286-292 https://doi.org/10.1016/j.scienta.2013.07.016
  39. Tang N, Mo G, van Tuyl J, Arens P, Liu J, Tang D (2014) Genetic diversity and structure of Lilium pumilum DC in southeast of Qinghai-Tibet plateau. Plant Syst Evol 300:1453-1464
  40. van Raamsdonk LWD, de Vries T (1996) Cultivar classification in Tulipa L. (Liliaceae). Acta Bot Neerl 45:183-198 https://doi.org/10.1111/j.1438-8677.1996.tb00508.x
  41. Wang F, Yang T, Burlyaeva M, Li L, Jiang J, Fang L, Redden R, Zong X (2015) Genetic diversity of grasspea and its relative species revealed by SSR markers. PLoS One. https://doi.org/10.1371/journal.pone.0118542
  42. Wilford R (2006) Tulips: Species and Hybrids for the Gardener. Timber Press
  43. Williamson VM (1999) Plant nematode resistance genes. Curr Opin Plant Biol 2:327-331 https://doi.org/10.1016/S1369-5266(99)80057-0
  44. Woodhead M, Russell J, Squirrell J, Hollingsworth M, Cardle L, Ramsay L, Gibby M, Powell W (2003) Development of EST-SSRs from the alpine lady-fern, Athyrium distentifolium. Mol Ecol Notes 3:287-290 https://doi.org/10.1046/j.1471-8286.2003.00427.x
  45. World Checklist of Selected Plant Families (2009) The Board of Trustees of the Royal Botanic Gardens, Kew. http://www.kew.org/wcsp
  46. Yanagisawa R, Kuhara T, Nishikawa T, Sochacki D, Marasek-Ciolakowska A, Okazaki K (2012) Phylogenetic analysis of wild and garden tulips using sequences of chloroplast DNA. Acta Hortic 953:103-110
  47. Yeh FC, Yang RC, Boyle TBJ (1999) Popgene version 1.31: Microsoft Windows-based freeware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, and Centre for International Forestry Research, Canada
  48. Zonneveld B (2009) The systematic value of nuclear genome size for all species of Tulipa L. (Liliaceae). Plant Syst Evol 281:217-245 https://doi.org/10.1007/s00606-009-0203-7

Cited by

  1. Genetic diversity of Tulipa suaveolens (Liliaceae) and its evolutionary relationship with early cultivars of T. gesneriana vol.306, pp.2, 2020, https://doi.org/10.1007/s00606-020-01667-7
  2. Genetic Diversity and Population Structure of Some Iranian Tulipa Species Within the Subgenus Eriostemones Using CDDP Method vol.45, pp.4, 2018, https://doi.org/10.1007/s40995-021-01144-x
  3. ISSR analysis of Tulipa suaveolens (Liliaceae) populations from throughout the European part of the species range reveal genetic patterns shaped by Pleistocene transgressions of the Caspian Sea vol.39, pp.9, 2018, https://doi.org/10.1111/njb.02967
  4. Breeding Aspects of Selected Ornamental Bulbous Crops vol.11, pp.9, 2018, https://doi.org/10.3390/agronomy11091709
  5. MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology vol.8, pp.1, 2021, https://doi.org/10.1038/s41438-021-00608-w