• Title/Summary/Keyword: SP(Superplasticizer)

Search Result 29, Processing Time 0.018 seconds

Modeling slump of concrete with fly ash and superplasticizer

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.559-572
    • /
    • 2008
  • The effects of fly ash and superplasticizer (SP) on workability of concrete are quite difficult to predict because they are dependent on other concrete ingredients. Because of high complexity of the relations between workability and concrete compositions, conventional regression analysis could be not sufficient to build an accurate model. In this study, a workability model has been built using artificial neural networks (ANN). In this model, the workability is a function of the content of all concrete ingredients, including cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, and fine aggregate. The effects of water/binder ratio (w/b), fly ash-binder ratio (fa/b), superplasticizer-binder ratio (SP/b), and water content on slump were explored by the trained ANN. This study led to the following conclusions: (1) ANN can build a more accurate workability model than polynomial regression. (2) Although the water content and SP/b were kept constant, a change in w/b and fa/b had a distinct effect on the workability properties. (3) An increasing content of fly ash decreased the workability, while raised the slump upper limit that can be obtained.

Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete

  • Mazloom, Moosa;Miri, Sayed Mojtaba
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.87-99
    • /
    • 2017
  • After passing through a magnetic field, the physical quality of water improves, and magnetic water (MW) is produced. There are many investigations on the effects of magnetic field on water that shows MW properties like saturation and memory effect. This study investigates the fresh and hardened properties of concrete mixed with MW, which contains silica fume (SF) and superplasticizer (SP). The test variables included the magnetic field intensity for producing MW (three kinds of water), SF content replaced cement (0 and 10 percent), water-to-cementitious materials ratio (W/CM=0.25, 0.35 and 0.45) and curing time (7, 28 and 90 days). The results of this study show that MW had a positive impact on the workability and compressive strength of concrete. By rising the intensity of the magnetic field which was used for producing MW, its positive influence on both workability and compressive strength improved. MW had greater positive impacts on samples containing SP that did not have SF. Moreover, the best compressive strength improvements of concrete achieved as W/CM ratio decreased.

The Effect of PC-Based SP on Rheology and Strength of High Strength Grout (PC계 유동화제가 고강도 그라우트에 유동성 및 강도에 미치는 영향)

  • Kim, Beomhwi;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.148-149
    • /
    • 2022
  • The use of high-strength grout applied for facility foundations and bridges has recently been expanding in offshore wind farm. Wind farm in offshore require bearing capacity for horizontal loads such as wind, waves, and earthquakes. In order to improve the bearing force of the base part, sufficient fluidity and a certain strength should be ensured so that the high-strength grout is densely charged in the narrow space of the connection part. Therefore, in this study, changes in fluidity and strength according to the ratio of PC-based superplasticizer mixed in high-strength grout were measured. As a result, as the ratio of the superplasticizer increased, fluidity increased and strength decreased. However, the strength did not decrease when the ratio of superplasticizer was above a 0.005. Therefore, it was confirmed that the fluidity change was remarkable when a 0.005 ratio of PC-based superplasticizer were added.

  • PDF

Mock up test and Field Application of Black Concrete Applying Superplasticizer containing Carbon Amino Silica Black (카본아미노실리카 블랙 고성능감수제(CASB-SP)를 사용한 블랙콘크리트의 Mock-up Test 및 현장적용)

  • Hong, Seok-Min;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.627-633
    • /
    • 2013
  • This paper presents the result of a mock-up test and field application of concrete that is black in color thanks to the application of superplasticizer containing carbon amino silica black (CASB-SP). Mock-up specimen with a size of $3000{\times}1500{\times}40$ mm was fabricated with black concrete applying 0.5% of CSAB-SP with 27 MPa. After dividing the zone in wall mock-up specimen, three different water repelling agents were applied to verify its effect of efflorescence prevention. It was found that the use of CASB-SP with 0.5% made the black concrete develop a highly clear black color, and the epoxy type water repelling agent had better performance in efflorescence prevention. Based on mock-up test, field application was conducted with bridge member. It was also found that the application of CASB-SP showed favorable results in black color development.

Fluidity Performance Evaluation of Low Viscosity Typed Superplasticizer for Cement-Based Materials Incorporating Supplementary Cementitious Materials (혼화재료를 치환한 시멘트 계열 재료에 대한 저점도형 고성능 감수제의 유동 성능 평가)

  • Son, Bae-Geun;Lee, Hyang-Seon;Lee, You-Jeong;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • The aim of the research is to provide a fundamental data of low viscosity typed superplasticizer (SP) on cement-based materials incorporating various supplementary cementitious materials (SCMs). As a relatively new product, low-viscosity typed SP has introduced for high performance concrete with high viscosity due to its high solid volume fraction with various SCMs. However, there are not enough research or reports on the performance of the low viscosity typed SP with cement-based materials incorporting SCMs. hence, in this research, for cement paste and mortar, fluidity and rheological properties were evaluated when the mixtures contained various SCMs such as fly ash, blast furnace slag, and silica fume. From the experiment conducted, it was checked that the low viscosity typed superplasticizer decreased the plastic viscosity of the mixture as well as the yield stress. From the results of this research, it is expected to contribute on introduction of new type SP for high performance concrete or high-viscous cementitious materials.

Effect of Carbon Amino Silica Black Contained Superplasticizer on the Engineering Properties and Chromaticity of Black Color Concrete (카본 아미노 실리카 블랙 기반 고성능 감수제가 블랙 컬러 콘크리트의 공학적 특성 및 발색도에 미치는 영향)

  • Han, Min-Cheol;Hong, Seok-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.181-188
    • /
    • 2013
  • This paper is to investigate experimentally an effect of carbon amino silica black-superplasticizer(CASB-SP)on the engineering properties and chromaticity of black color concrete with 0.45 of W/C(water to cement). CASB-SP and carbon black were applied for pigment of the concrete. To prevent efflorescence of concrete, four different water repellent agents were also applied. As results, it was found that use of CASB-SP increased the slump and air contents. Furthermore, the use of CASB-SP increased the compressive strength. As CASB-SP dosages increased, chromaticity was well developed. For the effect of water repellent agent, the use of epoxy type was effective for protection from efflorescence. Based on test results, it was evaluated that 0.5% of CASB-SP effectively improve the concrete quality as well as enhance the chromaticity with proper dosage.

Characteristics of Color Development of the Black Concrete depending on CASB added Superplasticizer Dosages (CASB-SP 혼입율 변화에 따른 블랙콘크리트의 발색 특성)

  • Kim, Kyoung-Hoon;Hong, Seak-Min;Yoo, Seung-Yeup;Oh, Chi-hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.73-75
    • /
    • 2012
  • In this study, basic physical properties and color development of the black concrete depending on CASB-SP dosages are investigated. According to results, It showed that the slump and air contents of the concrete containing CASB-SP meet all requirements of concrete except when CASB-SP 5.0 % is used. It also showed that the more the CASB-SP is used, the higher the compressive strength becomes. On the other hand, It is found that if the CASB-SP 5.0 % is used, the compressive strength was reduced as the more CASB-SP 5 % is used. In terms of color, it was found out that the more CASB-SP is used, the darker the black becomes.

  • PDF

A Study on the Fluidity of Antiwashout Underwater Concrete Containing Fly Ash (Fly Ash를 사용한 수중불분리 콘크리트의 유동성에 관한 연구)

  • 권중현;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.153-161
    • /
    • 1998
  • This paper is to investigate the Fluidity of Antiwashout Underwater Concrete containing Fly Ash. The results of study are concluded as follows: the increase in Slump Flow value did not happen in the plain concrete which was replaced cement by Fly Ash; however, the maximum value could reach in the replacement of 30% of Fly Ash by weight of cement in the Fly Ash replaced concrete. On the condition of Fly Ash-Antiwashout Underwater Concrete in expecting 50 cm of the Slump Flow, it was necessary that the usage amount of Superplasticizer be around 1% of unit Binder, and 1.5% in 60 cm of the Slump Flow, respoectively.

  • PDF

Statistical models for mechanical properties of UHPC using response surface methodology

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.667-675
    • /
    • 2017
  • One of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.

Statistical flexural toughness modeling of ultra high performance concrete using response surface method

  • Mosabepranah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.477-488
    • /
    • 2016
  • This paper aims to model the effects of five different variables which includes: cement content (C), the steel fiber amount (F), the silica fume amount (SF), the superplasticizer (SP), the silica fume amount (SF), and the water to cementitious ratio (w/c) on 28 days flexural toughness of Ultra High Performance Concrete (UHPC) as well as, a study on the variable interactions and correlations by using analyze of variance (ANOVA) and response surface methodology (RSM). The variables were compared by fine aggregate mass. The model will be valid for the mixes with 0.18 to 0.32 w/c ratio, 4 to 8 percent steel fiber, 7 to 13 percent cement, 15 to 30 percent silica fume, and 4 to 8 percent superplasticizer by fine aggregate mass.