• Title/Summary/Keyword: SOx and NOx

Search Result 205, Processing Time 0.026 seconds

Estimation of Atmospheric Pollutant Emissions from Vessels in Major Harbor Cities in Korea and related Social Cost (국내 주요 항구도시의 선박 배기가스 배출량 산정 및 사회적 비용 추정)

  • Choi, Jung-kil;Kim, Myung-won;Lee, Hyo-jin;Kang, Tea-soon;Lee, Kang-wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.905-917
    • /
    • 2021
  • Atmospheric pollutant emissions, mainly exhaust gas emissions from vessels, and the resultant social costs of pollution in the Korean harbor cities of Incheon, Mokpo, Gwangyang, Busan and Ulsan, are examined in this study, and the need for an emissions reduction plan is highlighted. Busan had several vessels entering its port, while Mokpo had few vessels, yet the vessels emission contribution was high in both the cities. Ulsan had world-class heavy-chemical industries, Gwangyang had steel mills and Incheon had a manufacturing industry and more vessels entering its port than Mokpo, yet the emission contribution was low in these cities. By calculating exhaust gas emissions from the vessels, it was found that CO2 was the highest, followed by NOx and SOx. By vessel type, Busan, Ulsan, and Incheon had more oil tank vessels, Gwangyang had more cargo vessels, and Mokpo had more ferries. As a result of social cost, Busan paid the highest, while the highest emission was PM. The use of low-sulfur oil can directly reduce PM and, SOx emissions and indirectly reduce NOx emissions. However, in order to reduce high CO2 emissions, only low-sulfur oil will not help. Therefore, the study suggested the need for reduction plan that use of fossil fuels, by using alternative maritime power (AMP).

A Study on Estimating Air Pullution in the Port of Incheon (인천항의 대기오염물질 배출량 산정 연구)

  • Lee, Jeong-Uk;Lee, Hyang-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.143-157
    • /
    • 2021
  • International organizations such as the World Health Organization, the Organization for Economic Development and Cooperation, and major developed countries recognize the seriousness of air pollution. International organizations such as the International Maritime Organization have also implemented various regulations to reduce air pollution from ships. In line with this international trend, the government has also enacted a special law on improving air quality in port areas, and is making efforts to reduce air pollution caused by ports. The purpose of the Special Act is to implement comprehensive policies to improve air quality in port areas. This study sought to identify the emissions of each source of air pollutants originating from the port and prepare basic data on setting the policy priorities. To this end, the analysis was conducted in six categories: ships, vehicles, loading and unloading equipment, railways, unloading/wild ash dust, road ash dust, and the methodology presented by the European Environment Agency(EEA) and the United States Environmental Protection Agency(EPA). The pollutants subject to analysis were analyzed for carbon monoxide(CO), nitrogen oxides (NOX), sulfur oxides(SOX), total airborne materials(TSP), particulate matter(PM10, PM2.5), and ammonia(NH3). The analysis showed a total of 7,122 tons of emissions. By substance, NOX accounted for the largest portion of 5,084 tons, followed by CO (984 tons), SOX (530 tons), and TSP (335 tons). By source of emissions, ships accounted for the largest portion with 4,107 tons, followed by vehicles with 2,622 tons, showing high emissions. This proved to be the main cause of port air pollution, with 57.6% and 36.8% of total emissions, respectively, suggesting the need for countermeasures against these sources.

A Study on Estimating Ship Emission - Focusing on Gwangyang Port and Ulsan Port (선박에 기인한 대기오염물질 배출량 산정 연구 -광양항과 울산항을 중심으로)

  • Zhao, Ting-Ting;Yun, Kyong-Jun;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • Recently, air pollution from the marine ports has become a serious issue all over the world. Because marine trade accounts for 99.7% of Korea's trade, efforts are required to recognize the level of port pollution and establish environmental policies. This study estimates air pollution emitted during the berthing process in the Gwangyang and Ulsan ports. Data on ship activity and characteristics are collected and reasonable methodologies and factors from EEA and EPA are adopted. The results show that 253.09 tons of CO, 1986.61 tons of NOx, 684.01 tons of SOx, 47.88 tons of $PM_{10}$, and 44.69 tons of $PM_{2.5}$ are emitted at the Gwangyang port. Further, the Ulsan port emitted 212.28 tons of CO, 1712.54 tons of NOx, 573.72 tons of SOx, 40.16 tons of $PM_{10}$, and 37.48 tons of $PM_{2.5}$. A stage-by-stage plan for installing AMP infrastructure is suggested as part of a green port policy. This research provides the current pollution status and contributes guidelines for the direction of future policy.

NOx Removal Characteristics Using Radical In A Diesel Engine (Radical을 이용한 디젤 엔진의 NOx 제거 특성)

  • Jeon, J.H.;Choi, S.H.;Jeon, C.H.;Chang, Y.J.;Lee, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.715-719
    • /
    • 2000
  • It is reported that we are facing the serious environment pollution difficulties such as acid rain, green house effects, etc. The gaseous matter CO, NOx, SOx, VOCs which are regarded as main factors for these current pollutions are mainly emitted from power plants and vehicles. Therefore several leading countries are regulating the related laws strictly, especially exhaust emissions from a Diesel engine without an after treatment device. The Objective of this study is to find out NOx removal characteristics focused on emissions of a Diesel engine using radical at each engine speed and load. It is generated from outer air and put into a mixing chamber in the end of exhaust line. In addition, the optimum temperature condition to activate reaction by radical is experimentally carried out. Concentration of exhaust emissions is analyzed from the gas anlayzer(KaneMay) and FTIR to estimate by-products.

  • PDF

Combustion Characteristics of Coal-Fired Boiler Depending on the Variations in Combustion Air Supply Method (미분탄 보일러의 연소용 공기공급 변화에 따른 노내 연소상태 해석)

  • Seo, San-Il;Park, Ho-Young;Kang, Dong-Soo;Jeong, Dong-Hae
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • 3-D CFD(Computational Fluid Dynamics) work were carried out to investigate the combustion characteristics in a boiler depending on the variations in air supply condition. For the gas temperature, $O_2$, NO, SOx at the outlet of economizer, the predicted values were been compared with the measured data. With the verified CFD model, the effects of air flow rates through SOFA(Separated Over Fire Air) and CCOFA(Closed Coupled Over Fire Air) on the combustion behavior in a boiler were simulated, and the distributions of NOx and gas temperature were mainly compared each other. The change in SOFA air flow rate gave the more sensitive effect on NOx than that in CCOFA. The distributions of gas temperature at convection path are differed with the changes in SOFA and CCOFA flow rate, so the combustion modification such as yaw anlge adjustment are required to get an enhanced gas temperature distribution.

The Effect of Emission Control Using Electrolytic Seawater Scrubber

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.373-377
    • /
    • 2009
  • It is well known that SOx and NOx concentration has a considerable influence on the $N_2O$ emission of the greenhouse gas properties. The quantity of SOx generated during combustion, on fuel specific basis, is directly related to the sulfur content of the fuel oil. However, restricting the fuel oil sulfur content is only a partial response to limiting the overall quantity of SOx emissions, as there remains no over control on the fuel oil consumption other than the commercial pressure which have always directed the attention. This study was carried out as a new basic experiment method of emission control, manly targeted to the vessel. In the experiment, where the scrubbing was achieved through spray tower with high alkaline water made from the electrolysis of seawater, the combined action was to neutralize the exhaust gases (SOx, PM, CO etc.), dilute it, and wash it out. The results showed that SOx reduction of around 95 percent or over could be achieved when using in the high alkaline water, and also leaded to a reduction in the stability of the each pollutant components including the PM (Particulate Matter). The results suggest that the seawater electrolysis method has a very effective reduction of emissions without heavy cost, or catalysts particularly on board.

Selective Catalytic Reduction of NOx by Urea in a Fluidized Bed Reactor (유동층 반응기에서 우레아에 의한 NO 선택적 촉매 환원)

  • 노선아;정순화;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.35-39
    • /
    • 1999
  • 현재 NO제거에 주로 사용되는 환원제로서 NH$_3$가 있는데 이는 NO에 대한 선택도가 우수하기 때문이다. 그러나, NH$_3$는 독성이 강하고 부식성이 있어 저장 및 수송에 많은 비용이 든다는 단점이 있다. 따라서 본 연구에서는 SOx/NOx 동시 제거 공정에 효과적으로 알려진 fresh and sulfated CuO/${\gamma}$-A1$_2$O$_3$촉매상에서 독성이 강한 NH$_3$를 대신하는 새로운 환원제로서 urea용액을 이용하여 유동층 반응기에서 SCR을 수행해 보고자 한다.(중략)

  • PDF

Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port (부산 북항에서의 선박 배출물질 현황과 선속제한에 의한 배출량 감소 연구)

  • Lee, Bo-Kyeong;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.572-580
    • /
    • 2019
  • In view of the numerous discussions on global environmental issues, policies have been implemented to limit emissions in the field of marine transport, which accounts for a major part of international trade. In this study, a ship's emissions were calculated by applying the engine load factor to determine the total quantity of emissions based on the ship's speed reduction. For ships entering and leaving the Busan North Port from 1 January to 31 December 2017, emissions were calculated and analyzed based on the ship's type and its speed in the reduced speed zone (RSZ), which was set to 20 nautical miles. The comparison of the total amount of emissions under all situations, such as cruising, maneuvering, and hotelling modes revealed that the vessels that generated the most emissions were container ships at 76.1 %, general cargo ships at 7.2 %, and passenger ships at 6.8 %. In the cruising and maneuvering modes, general cargo ships discharged a lesser amount of emission in comparison with passenger ships; however, in the hotelling mode, the general cargo ships discharged a larger amount of emission than passenger ships. The total emissions of nitrogen oxides (NOx), sulphur oxides (SOx), particulate matter (PM), and volatile organic compounds (VOC), were 49.4 %, 45 %, 4 %, and 1.6 %, respectively. Furthermore, the amounts of emission were compared when ships navigated at their average service speed, 12, 10, and 8 knots in the RSZ, respectively. At 12 knots, the reduction in emissions was more than that of the ships navigating at their average service speed by 39 % in NOx, 40 % in VOC, 42 % in PM, and 38 % in Sox. At 10 knots, the emission reductions were 52 %, 54 %, 56 %, and 50 % in NOx, VOC, PM, and Sox, respectively. At 8 knots, the emission reductions were 62 %, 64 %, 67 %, and 59 % in NOx, VOC, PM, and Sox, respectively. As a result, the emissions were ef ectively reduced when there was a reduction in the ship's speed. Therefore, it is necessary to consider limiting the speed of ships entering and leaving the port to decrease the total quantity of emissions.

An Evaluation on the Combustion Characteristics of Heavy Oil-Water Emulsions (중질유-물 유화연료의 연소특성 평가)

  • Lee, Yong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1722-1728
    • /
    • 2002
  • Most researches regarding emulsified fuel were in the areas of emulsifier, emulsified fuel manufacturing and emulsified fuel droplet combustion, but there were little papers published regarding emulsified fuel combustion and boiler efficiency in an industrial boiler. The main purpose of this study is to clarify whether improvements in the boiler efficiency and the reduction of pollutants such as CO, NOx, SOx and smoke exist or not when emulsified fuels are combusted in the commercial boiler. Main experimental parameters were water content in heavy oil , excess $O_2$, and boiler load. The fuels used in this experiment were 0.5 B-C, and 5 kinds of 0.5 B-C/water emulsified fuels. The combustion characteristics of heavy oil and its emulsions with water were investigated in an industrial boiler. The combustion stability was monitored and exhaust gases such as CO, NOx, SOx and smoke were measured with excess $O_2$ and combustion load. In case of emulsified fuel combustion, flame stability was poor and boiler efficiency was lowered by 1.6~5.7%, but emission levels of CO and smoke were improved.

Analysis of the Emission Benefits of Using Alternative Maritime Power (AMP) for Ships

  • Kim, Kyunghwa;Roh, Gilltae;Chun, Kangwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.381-394
    • /
    • 2019
  • The marine industry contributes a large proportion of the air pollutant emissions along coastal regions, and this air pollution has been strongly linked to cardiovascular diseases and other illnesses. To alleviate the problem, many ports have installed alternative maritime power (AMP) facilities that enable onboard marine auxiliary engines with generators (gensets) to be shut down while a ship is at berth. This study compared the emissions from conventional gensets with those from AMP facilities, focusing on four emission types: greenhouse gases (GHG), sulphur oxides (SOX), nitrogen oxides (NOX), and particulate matter (PM). Both direct (combustion / operation) and indirect (upstream) emissions were considered together for the emission comparison. The results showed that AMP has lower emissions than conventional onboard gensets, and this benefit is highly dependent on the electricity generation mix onshore. On average, GHG emissions could be reduced by about 18.3 %, while the other emissions (SOX, NOX, and PM) would decrease more dramatically (88.4 %, 90.1 %, and 91.5 %, respectively). Additionally, future benefits of the AMP would increase due to the expansion of renewable energies. Thus, this study supports the potential of AMP as a promising solution for environmental concerns at ports worldwide.