• Title/Summary/Keyword: SONOS Memory

Search Result 71, Processing Time 0.023 seconds

Programming Characteristics of the multi-bit devices based on SONOS structure (SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성)

  • An, Ho-Myoung;Kim, Joo-Yeon;Seo, Kwang-Yell
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.80-83
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by $0.35\;{\mu}m$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the two-bits per cell operation, charges must be locally trapped in the nitride layer above the channel near the junction. Channel hot electron (CHE) injection for programming can operate in multi-bit using localized trap in nitride film. CHE injection in our devices is achieved with the single power supply of 5 V. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve were investigated. The multi-bit operation which stores two-bit per cell is investigated with a reverse read scheme. Also, hot hole injection for fast erasing is used. Due to the ultra-thin gate dielectrics, our results show many advantages which are simpler process, better scalability and lower programming voltage compared to any other two-bit storage flash memory. This fabricated structure and programming characteristics are shown to be the most promising for the multi-bit flash memory.

  • PDF

Charge Pumping Measurements Optimized in Nonvolatile Polysilicon Thin-film Transistor Memory

  • Lee, Dong-Myeong;An, Ho-Myeong;Seo, Yu-Jeong;Kim, Hui-Dong;Song, Min-Yeong;Jo, Won-Ju;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.331-331
    • /
    • 2012
  • With the NAND Flash scaling down, it becomes more and more difficult to follow Moore's law to continue the scaling due to physical limitations. Recently, three-dimensional (3D) flash memories have introduced as an ideal solution for ultra-high-density data storage. In 3D flash memory, as the process reason, we need to use poly-Si TFTs instead of conventional transistors. So, after combining charge trap flash (CTF) structure and poly-Si TFTs, the emerging device SONOS-TFTs has also suffered from some reliability problem such as hot carrier degradation, charge-trapping-induced parasitic capacitance and resistance which both create interface traps. Charge pumping method is a useful tool to investigate the degradation phenomenon related to interface trap creation. However, the curves for charge pumping current in SONOS TFTs were far from ideal, which previously due to the fabrication process or some unknown traps. It needs an optimization and the important geometrical effect should be eliminated. In spite of its importance, it is still not deeply studied. In our work, base-level sweep model was applied in SONOS TFTs, and the nonideal charge pumping current was optimized by adjusting the gate pulse transition time. As a result, after the optimizing, an improved charge pumping current curve is obtained.

  • PDF

Influence of Electron and Hole Distribution on 2T SONOS Embedded NVM

  • Choi, Woo Young;Kim, Da Som;Lee, Tae Ho;Kwon, Young Jun;Park, Sung-Kun;Yoon, Gyuhan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.624-629
    • /
    • 2016
  • The influence of electron and hole (EH) distribution on two-transistor (2T) silicon-oxide-nitride-oxide-silicon (SONOS) embedded nonvolatile memory (eNVM) is investigated in terms of reliability. As PE (program/erase) cycles are repeated, it is observed that the electron distribution in the nitride layer becomes wider. It leads to the EH distribution mismatch, which degrades the reliability of 2T SONOS eNVM.

Realization of Two-bit Operation by Bulk-biased Programming Technique in SONOS NOR Array with Common Source Lines

  • An, Ho-Myoung;Seo, Kwang-Yell;Kim, Joo-Yeon;Kim, Byung-Cheul
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.180-183
    • /
    • 2006
  • We report for the first time two-bit operational characteristics of a high-density NOR-type polysilicon-oxide-nitride-oxide-silicon (SONOS) array with common source line (CSL). An undesired disturbance, especially drain disturbance, in the NOR array with CSL comes from the two-bit-per-cell operation. To solve this problem, we propose an efficient bulk-biased programming technique. In this technique, a bulk bias is additionally applied to the substrate of memory cell for decreasing the electric field between nitride layer and drain region. The proposed programming technique shows free of drain disturbance characteristics. As a result, we have accomplished reliable two-bit SONOS array by employing the proposed programming technique.

A Study on Poly-Si TFT characteristics with string structure for 3D SONOS NAND Flash Memory Cell (3차원 SONOS 낸드 플래쉬 메모리 셀 적용을 위한 String 형태의 폴리실리콘 박막형 트랜지스터의 특성 연구)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.7-11
    • /
    • 2017
  • In this paper, we have studied the characteristics of NAND Flash memory in SONOS Poly-Si Thin Film Transistor (Poly-Si TFT) device. Source/drain junctions(S/D) of cells were not implanted and selective transistors were located in the end of cells. We found the optimum conditions of process by means of the estimation for the doping concentration of channel and source/drain of selective transistor. As the doping concentration was increased, the channel current was increased and the characteristic of erase was improved. It was believed that the improvement of erase characteristic was probably due to the higher channel potential induced by GIDL current at the abrupt junction. In the condition of process optimum, program windows of threshold voltages were about 2.5V after writing and erasing. In addition, it was obtained that the swing value of poly Si TFT and the reliability by bake were enhanced by increasing process temperature of tunnel oxide.

A Study of the Memory Characteristics of Al2O3/Y2O3/SiO2 Multi-Stacked Films with Different Tunnel Oxide Thicknesses (터널 산화막 두께에 따른 Al2O3/Y2O3/SiO2 다층막의 메모리 특성 연구)

  • Jung, Hye Young;Choi, Yoo Youl;Kim, Hyung Keun;Choi, Doo Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.631-636
    • /
    • 2012
  • Conventional SONOS (poly-silicon/oxide/nitride/oxide/silicon) type memory is associated with a retention issue due to the continuous demand for scaled-down devices. In this study, $Al_2O_3/Y_2O_3/SiO_2$ (AYO) multilayer structures using a high-k $Y_2O_3$ film as a charge-trapping layer were fabricated for nonvolatile memory applications. This work focused on improving the retention properties using a $Y_2O_3$ layer with different tunnel oxide thickness ranging from 3 nm to 5 nm created by metal organic chemical vapor deposition (MOCVD). The electrical properties and reliabilities of each specimen were evaluated. The results showed that the $Y_2O_3$ with 4 nm $SiO_2$ tunnel oxide layer had the largest memory window of 1.29 V. In addition, all specimens exhibited stable endurance characteristics (program/erasecycles up to $10^4$) due to the superior charge-trapping characteristics of $Y_2O_3$. We expect that these high-k $Y_2O_3$ films can be candidates to replace $Si_3N_4$ films as the charge-trapping layer in SONOS-type flash memory devices.

Unified Dual-Gate Phase Change RAM (PCRAM) with Phase Change Memory and Capacitor-Less DRAM (Phase Change Memory와 Capacitor-Less DRAM을 사용한 Unified Dual-Gate Phase Change RAM)

  • Kim, Jooyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.76-80
    • /
    • 2014
  • Dual-gate PCRAM which unify capacitor-less DRAM and NVM using a PCM instead of a typical SONOS flash memory is proposed as 1 transistor. $VO_2$ changes its phase between insulator and metal states by temperature and field. The front-gate and back-gate control NVM and DRAM, respectively. The feasibility of URAM is investigated through simulation using c-interpreter and finite element analysis. Threshold voltage of NVM is 0.5 V that is based on measured results from previous fabricated 1TPCM with $VO_2$. Current sensing margin of DRAM is 3 ${\mu}A$. PCM does not interfere with DRAM in the memory characteristics unlike SONOS NVM. This novel unified dual-gate PCRAM reported in this work has 1 transistor, a low RESET/SET voltage, a fast write/erase time and a small cell so that it could be suitable for future production of URAM.

Investigation for Multi-bit per Cell on the CSL-NOR Type SONOS Flash Memories (CSL-NOR형 SONOS 플래시 메모리의 멀티비트 적용에 관한 연구)

  • Kim Joo-Yeon;An Ho-Myoung;Lee Myung-Shik;Kim Byung-Cheul;Seo Kwang-Yell
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.193-198
    • /
    • 2005
  • NOR type flash 32 ${\times}$ 32 way are fabricated by using the typical 0.35 ${\mu}{\textrm}{m}$ CMOS process. The structure of array is the NOR type with common source line. In this paper, optimized program and erase voltage conditions are presented to realize multi-bit per cell at the CSL-NOR array. These are considered selectivity of selected bit and disturbances of unselected bits. Retention characteristics of locally trapped-charges in the nitride layer are investigated. The lateral diffusion and vertical detrapping to the tunneling oxide of locally trapped charges as a function of retention time are investigated by using the charge pumping method. The results are directly shown by change of the trapped-charges quantities.

A Subthreshold Slope and Low-frequency Noise Characteristics in Charge Trap Flash Memories with Gate-All-Around and Planar Structure

  • Lee, Myoung-Sun;Joe, Sung-Min;Yun, Jang-Gn;Shin, Hyung-Cheol;Park, Byung-Gook;Park, Sang-Sik;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • The causes of showing different subthreshold slopes (SS) in programmed and erased states for two different charge trap flash (CTF) memory devices, SONOS type flash memory with gate-all-around (GAA) structure and TANOS type NAND flash memory with planar structure were investigated. To analyze the difference in SSs, TCAD simulation and low-frequency noise (LFN) measurement were fulfilled. The device simulation was performed to compare SSs considering the gate electric field effect to the channel and to check the localized trapped charge distribution effect in nitride layer while the comparison of noise power spectrum was carried out to inspect the generation of interface traps ($N_{IT}$). When each cell in the measured two memory devices is erased, the normalized LFN power is increased by one order of magnitude, which is attributed to the generation of $N_{IT}$ originated by the movement of hydrogen species ($h^*$) from the interface. As a result, the SS is degraded for the GAA SONOS memory device when erased where the $N_{IT}$ generation is a prominent factor. However, the TANOS memory cell is relatively immune to the SS degradation effect induced by the generated $N_{IT}$.

The 1/f Noise Analysis of 3D SONOS Multi Layer Flash Memory Devices Fabricated on Nitride or Oxide Layer (산화막과 질화막 위에 제작된 3D SONOS 다층 구조 플래시 메모리소자의 1/f 잡음 특성 분석)

  • Lee, Sang-Youl;Oh, Jae-Sub;Yang, Seung-Dong;Jeong, Kwang-Seok;Yun, Ho-Jin;Kim, Yu-Mi;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • In this paper, we compared and analyzed 3D silicon-oxide-nitride-oxide-silicon (SONOS) multi layer flash memory devices fabricated on nitride or oxide layer, respectively. The device fabricated on nitride layer has inferior electrical properties than that fabricated on oxide layer. However, the device on nitride layer has faster program / erase speed (P/E speed) than that on the oxide layer, although having inferior electrical performance. Afterwards, to find out the reason why the device on nitride has faster P/E speed, 1/f noise analysis of both devices is investigated. From gate bias dependance, both devices follow the mobility fluctuation model which results from the lattice scattering and defects in the channel layer. In addition, the device on nitride with better memory characteristics has higher normalized drain current noise power spectral density ($S_{ID}/I^2_D$>), which means that it has more traps and defects in the channel layer. The apparent hooge's noise parameter (${\alpha}_{app}$) to represent the grain boundary trap density and the height of grain boundary potential barrier is considered. The device on nitride has higher ${\alpha}_{app}$ values, which can be explained due to more grain boundary traps. Therefore, the reason why the devices on nitride and oxide have a different P/E speed can be explained due to the trapping/de-trapping of free carriers into more grain boundary trap sites in channel layer.