Journal of the Korean Society of Industry Convergence
/
v.21
no.4
/
pp.167-174
/
2018
Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.
A location estimate problem is critical issues for mobile robot. Because it is basic problem in practical use of the mobile robot which do what, or move where, or reach an aim. Already there are many technologies of robot localization (like GPS, vision, sonar sensor, etc) used on development. But the elevation of accurateness was brought the problem that must consider an increase of a hardware cost and addition electric power in each ways. There is the core in question to develop available and accurate sensing algorithm though it is economical. We used a ultrasonic sensor and was going to implement comparatively accurate localization though economical. Using a sensing data, we could make a grid map and estimate a position of a mobile robot. In this paper, to get a satisfactory answer about this problem using a ultrasonic sensor.
Lee Yoo-Won;Mukai Tohru;Iida Kohji;Hwang Doo-Jin;Shin Hyeong-Il
Fisheries and Aquatic Sciences
/
v.5
no.3
/
pp.212-218
/
2002
The response behavior of a fish school to an approaching vessel was observed using scanning sonar. The evaluation using six parameters, which signify characteristics of school shape and behavior by sonar image processing, was proposed. Ten fish schools were analyzed and among them, three fish schools were identified for their changing shape, swimming direction, and swimming speed. Moreover, by tracing fish schools on stack of sonar images, these fish schools were seen to exhibit an apparent change of school shape and behavior. Therefore, the evaluation method of fish school behavior using six characteristic parameters indicating fish school shape and behavior by sonar image processing is useful.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.6
no.2
/
pp.161-166
/
2006
Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.
This paper deals with a super-resolution that improves the resolution of side scan sonar images using learning-based compressive sensing. Learning-based compressive sensing combined with deep learning and compressive sensing takes a structure of a feed-forward network and parameters are set automatically through learning. In particular, we propose a method that can effectively extract additional information required in the super-resolution process through various initialization methods. Representative experimental results show that the proposed method provides improved performance in terms of Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) than conventional methods.
The quality of side scan sonar images is determined by the frequency of a sonar. A side scan sonar with a low frequency creates low-quality images. One of the factors that lead to low quality is a high-level noise. The noise is occurred by the underwater environment such as equipment noise, signal interference and so on. In addition, in order to compensate for the transmission loss of sonar signals, the received signal is recovered by TVG (Time-Varied Gain), and consequently the side scan sonar images contain non-homogeneous noise which is opposite to optic images whose noise is assumed as homogeneous noise. In this paper, the SSCS (Structural Sparsity based Compressive Sensing) is proposed for removing non-homogeneous noise. The algorithm incorporates both local and non-local models in a structural feature domain so that it guarantees the sparsity and enhances the property of non-local self-similarity. Moreover, the non-local model is corrected in consideration of non-homogeneity of noises. Various experimental results show that the proposed algorithm is superior to existing method.
In active SONAR, several different methods are used to detect range-Doppler information of the target. Compressive sensing based method is more accurate than conventional methods and shows superior performance. There are several compressive sensing algorithms for range-Doppler estimation of active sonar. The ability of each algorithm depends on algorithm type, mutual coherence of sensing matrix, and signal to noise ratio. In this paper, we compared and analyzed computational performance and accuracy of various compressive sensing algorithms for range-Doppler estimation of active sonar. The performance of OMP (Orthogonal Matching Pursuit), CoSaMP (Compressive Sampling Matching Pursuit), BPDN (CVX) (Basis Pursuit Denoising), LARS (Least Angle Regression) algorithms is respectively estimated for varying SNR (Signal to Noise Ratio), and mutual coherence. The optimal compressive sensing algorithm is presented according to the situation.
The compressive sensing model for range-Doppler estimation can be expressed as an under-determined linear system y = Ax. To find the solution of the linear system with the compressive sensing method, matrix A should be sufficiently incoherent and x to be sparse. In this paper, we propose a transmission waveform design method that maintains the bandwidth required by the sonar system while lowering the mutual coherence of the matrix A so that the matrix A is incoherent. The proposed method combines two methods of optimizing the sensing matrix with the alternating projection and suppressing unwanted frequency bands using the DFT (Discrete Fourier Transform) matrix. We compare range-Doppler estimation performance of existing waveform LFM(Linear Frequency Modulated) and designed waveform using the matched filter and the compressive sensing method. Simulation shows that the designed transmission waveform has better detection performance than the existing waveform LFM.
The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.
Journal of Institute of Control, Robotics and Systems
/
v.13
no.5
/
pp.434-443
/
2007
Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.