최근 GPS시스템, 감시 시스템, 기상 관측 시스템과 같은 다양한 응용 시스템으로부터 수집된 시공간 속성을 가진 데이터를 분석하고자 하는 시공간 데이터 마이닝에 대한 관심이 더욱 높아지고 있다. 기존의 시공간 데이터 마이닝에 대한 연구는 문자.숫자 데이터를 기반의 마이닝 기법을 그대로 적용하고 있기 때문에 데이터의 시공간 속성을 충분히 고려한 분석으로는 한계가 많은 것이 사실이다. 본 논문에서는 패턴 인식과 클러스터링 능력이 뛰어나다고 알려진 SOM을 기반으로 시공간 클러스터링 모듈을 개발하고, 개발된 모듈의 성능과 클러스터링 정확성에 대하여 K-means, 응집 계층 알고리즘(Average Linkage, Ward)과 비교함으로써 시공간 데이터 마이닝을 위한 각 알고리즘들의 성능을 분석하였다 또한 입력 데이터의 특성과 클러스터링 결과를 더욱 정확하게 나타내어 가시적인 분석을 도울 수 있도록 시공간 데이터 클러스터링을 위한 가시화 모듈을 개발하였다.
정보추천 시스템은 사용자가 어떤 정보를 선호하는지를 식별함으로써 산재한 정보 중에서 적절한 정보만을 제공하는 것을 목표로 한다. 이러한 정보추천 시스템에서 사용되는 정보여과 기술에는 내용기반 여과와 협력적 여과가 있다. 기존의 협력적 정보여과 기술은 선호도를 적게 제시한 사용자에게 정보를 추천하기 어렵고, 동일한 상품 정보에 대해서 사용자의 평가가 없을 경우 사용자간의 유사성을 판단하기 어려운 단점이 있다. 본 논문은 SVD (Singular Value Decomposition)를 통해 사용자 프로파일을 정량화함으로써 사용자 선호도 행렬로부터 숨어있는 의미정보를 추출하여 동일한 정보에 대해 선호도를 평가해야 한다는 단점을 극복한다. 이때, 사용자 프로파일 벡터를 비감독 학습 알고리즘인 SOM (Self0Organizing Map)으로 클러스터링하여 사용자를 분류하고, 정보추천은 사용자 그룹간에서 이루어지며 Pearson correlation 알고리즘을 이용한다. 기존의 방법과 비교한 결과, 제안한 방법이 새로운 사용자에 대해서도 적절한 정보를 추천할 수 있음을 볼 수 있었다.
키프레임 애니메이션 기법에 비해 보다 사실적이고 효율적인 작업을 가능하게 한 동작 포착 기법에 의한 동작데이터는 편집의 어려움으로 인해 재사용이 용이하지 못하다는 문제를 가진다. 본 논문에서는 효과적인 동작 포착데이터 편집 기법으로써 비감독 학습 기반의 균등 자세 지도(uniform posture map: UPM)를 이용한 동작 편집 기법을 제안한다. 다른 동작 편집 알고리즘들에 비하여 UPM 알고리즘은 상대적으로 적은 계산량을 요구하여 실시간 적용에 용이하며, 특히 자기 조직 지도(self-organizing map: SOM) 알고리즘을 이용한 동작 편집을 할 때, 실제로 존재하지 않은 자세가 포함될 수 있는 가능성을 학습 단계에서 제거함으로써 자세 생성에 있어서 안정성을 확보할 수 있다. 또한 제약조건이 많은 복잡한 대상체에 대한 적용에 있어서 제약조건의 수에 비례해서 계산량이 증가하는 기존 알고리즘의 약점을 보완한다. 본 논문에서는 UPM 알고리즘을 이용한 동작 편집 기법의 응용으로서 동작 전이 분야와 역운동학 분야에서의 적용 사례를 보였다. 본 논문의 제안 알고리즘은 가상 현실이나 컴퓨터 애니메이션, 게임들의 분야에 다양하게 적용될 수 있다.
u-City 활용을 위한 u-공공시설의 개발은 첨단 건축기술과 유비쿼터스 컴퓨팅의 통합으로 새로운 형식의 공간계획과 공공시설물을 내외부에 설치하기 위해 건물의 기반 서비스 시설인 냉난방, 공조, 조명 그리고 전력 관련 시설들의 기반이 구축되어야 한다. 따라서 이 논문에서는 이러한 기반 서비스를 위한 가장 기본적인 것 중 하나인 단기 전력 시스템의 수요와 공급 문제를 해결하기 위하여 시계열 분석을 적용한 시간 패턴 분석을 통해 전력 수요 예측 기술을 제안한다. 시간 패턴 분석을 위해 SOM 알고리즘과 k-means 기법을 적용하여 요일별, 시간별 데이터를 군집화하고 그 자료를 이용하여 시간 패턴 분석 방법인 지수평활기법과 ARIMA 모형을 비교 분석하였다. 제안 시스템 성능 평가 결과 지수평활기법 보다 ARIMA 모형을 적용한 시스템이 더 좋은 결과를 보였다. 따라서, 이러한 전력 부하 예측 결과를 이용하여 전력 공급의 수요에 따른 계획이나 시스템 운영을 효과적으로 할 수 있다.
본 논문에서는 다중 클래스 아다부스트 기반의 분류기를 이용하여 엘리베이터 내 군집 밀도를 추정하는 방법을 제안한다. SOM을 사용하는 기존의 방법은 재현성이 떨어지며 충분한 성능을 내지 못한다. 제안한 방법은 GLDM(Grey-Level Dependency Matrix)과 GGDM(Grey-Gradient Dependency Matrix)의 텍스처 특징과 다중 클래스 아다부스트 기반의 분류기를 통해 실내 군집 밀도를 추정한다. 다중 클래스를 분류하기 위해 기존의 아다부스트 알고리즘에서 웨이트 업데이트 식을 변형하여 더 높은 성능의 약한 분류기를 생성하도록 하였다. 군집 밀도는 인원수에 따라 0명, 1~2명, 3~4명, 5명 이상 등 네 가지 클래스로 구분하였다. 엘리베이터 내 영상을 이용한 모의 실험 결과 제안된 방법은 기존의 방법보다 약 20% 정도의 검출률 향상을 나타내었다.
본 논문에서는 Kohonen SOM을 이용한 인식 학습 알고리즘인 LVQ를 이용하여 퍼지 규칙의 수를 줄이는 방안을 제안하였다. 많은 훈련 패턴을 입력하게 되면 그에 따른 퍼지 규칙 수가 증가하게 되고, 많은 기억용량과 분류에 긴 시간을 필요로 하는 문제점 있어 퍼지 규칙의 수를 줄이고자 한다. 그러나 퍼지 규칙의 수가 줄어듦으로서 발생하는 성능의 하락을 최소화하기 위하여 초기 참조 패턴이 입력 데이터에 근접하도록 훈련 된 후에 퍼지 규칙을 생성하였다. 생성된 퍼지 규칙은 LVQ를 이용하여 인식되기 바로 전에 가중치 벡터를 이용하여 근접하는 값 이내에 있는 가중치 벡터 값을 합하여 같은 퍼지 규칙을 부여하여 생성하였다. 그 결과로 5$\times$8 숫자 Gray scale를 이용하여 전체 146개의 가중치 벡터가 15개의 아주 적은 수의 퍼지 규칙으로 생성되었다.
방대한 양의 격자점 데이터 및 일기도 관련 데이터를 효율적으로 저장 및 검색 하기위해서는 데이터들의 유형을 찾아 서로 유형이 비슷한 데이터를 하나의 클러스터로 연관지어 놓으면 효율적인 저장과 검색을 할 수 있다. 클러스터링에서 데이터들의 어떤 특징 벡터를 추출하는가가 클러스터링의 결과에 가장 중요한 영향을 끼친다. 본 논문에서는 격자점, 기압값 데이터로부터 일기도의 특징을 표현할 수 있는 벡터로 변환 한반도도 중심의 8방향에 대한 고/저기압의 분포와 동아시아 지역을 24영역으로 나누어 각 영역별로 고/저기압의 분포 정보를 특징벡터로 추출하여 클러스터링하였다. 클러스터팅 알고리즘으로는 unsupervised mode인 SOM(Self Organizing Map) 기법을 사용하였다.
최근 대용량의 데이터베이스로부터 유용한 정보를 발견하고 데이터간에 존재하는 연관성을 탐색하고 분석하는 데이터 마이닝에 관한 많은 연구들이 진행되고 있다. 실제 응용분야에선 수집된 데이터는 시간이 지날수록 데이터의 양이 늘어나게 되고, 중복되는 속성과 잡음을 갖게 되어 마이닝 기법을 이용하는데 많은 시간과 비용이 소요된다. 또한 어느 속성이 중요한지 알 수 없어 중요한 속성이 중요하지 않은 속성에 의해 왜곡되거나 제대로 분석되지 않을 수 있다. 이 논문은 이러한 문제점들을 해결하기 위해, 대용량의 데이터에 적용할 수 있고 데이터에서 알려지지 않은 패턴을 발견할 뿐만 아니라, 사용자가 얻고자 하는 출력을 생성할 수 있는 혼합형 신경망 클러스터링 기법을 제안한다. 그리고 알고리즘의 타당성을 검증하기 위해 몇 가지 벤치마크데이터를 이용하여 본 논문의 타당성을 보인다.
The direction and the type of a fault on a transmission line needs to be identified rapidly and correctly. This paper presents a approach to identify fault direction and type with neural network on double circuit transmission line. A neural network based on self organization map(SOM) provides the ability to accurately classify the fault type and to select of a fault direction. In this paper, proposed algorithm uses different patterns of the associated voltages and currents in order to identify fault clusters.
실세계의 문제에서 많은 기계학습의 알고리즘들은 데이터의 클래스 불균형 문제에 어려움을 겪는다. 이러한 클래스 불균형 문제를 해결하기 위하여 데이터의 비율을 변경하거나 좀 더 나은 샘플링 전략으로 극복하려는 연구들이 제안되었다. 그러나 데이터의 비율을 변경하는 연구에서는 전체 데이터 분포의 특성을 고려하지 못하고, 샘플링 전략을 제안하는 연구에서는 여러 가지 제한 조건을 고려해야만 한다. 본 논문에서는 위의 두가지 방법의 장점을 모두 포함하는 개선된 집중 샘플링 방법을 제안한다. 제안된 방법에서는 클래스 불균형 문제를 해결하기 위해 학습에 유용한 데이터들을 샘플링하는데 스코어링에 기반한 데이터 분할 방법을 이용한다. 즉, 입력 데이터들에 대해 SOM(Self Organizing Map)의 학습 결과로 얻은 BMU(Best Matching Unit)와의 거리를 계산하고, 이 거리론 스코어라 한다. 측정된 스코어는 오름차순으로 정렬되며, 이 과정에서 입력 데이터의 분포가 재 표현되고, 재 표현된 분포는 전체 데이터의 특성을 대표하게 된다. 그 결과로 얻은 데이터들 중에서 유용하지 못한 데이터들에 대해 제거하는 과정을 수행하여 새로운 학습 데이터 셋을 얻는다. 새로운 학습 데이터 생성 과정에서는 재 표현된 분포의 결과를 두 구간(upper, lower)으로 분할하는데, 두 추간 사이의 데이터들은 유용하지 못한 패턴들로 간주되어 학습에 이용되지 않는다. 본 논문에서 제안한 방법은 클래스 불균형의 비율 감수 훈련 데이터의 크기 감소, 과적합의 방지 등 몇 가지 장점을 보인다. 제안한 방법으로 샘플링된 데이터에 kNN 을 적용하여, 분류 실험한 결과 심한 불균형이 있는 ecoli 데이터의 분류 성능이 최대 2.27배 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.