• Title/Summary/Keyword: SOLAR cell

Search Result 3,156, Processing Time 0.03 seconds

A solar Cell Fiber using Semi-conductive Polymers (반도체형 고분자를 이용한 태양전지섬유)

  • Song, Jun-Hyung;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.

Thermal Characteristics Evaluation of Concentrated Hybrid Panel with cooling system on PV module (PV모듈의 냉각장치를 적용한 집속형 복합패널의 집열 특성 평가)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.47-52
    • /
    • 2005
  • Normally if sunlight is directed on a solar cell without any increasing in temperature, the amount of absorption energy per unit area of each cell is increasing. In a silicon solar cell. however, cell conversion efficiency decreases with the increase of temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. We tried to design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect and use thermal energy more effectively. We compared performance of this new hybrid panel with current thermal panel. We also evaluated conversion efficiency, thermal capacity and confirmed cooling effects from thermal absorption efficiency.

A Study on Bow of Silicon Solar Cell by Soldering Different Thickness of Ribbon (리본 두께에 따른 태양전지 Bowing현상 연구)

  • Yoon, Na-Ri;Jung, Tae-Hee;Shin, Jun-Oh;Kang, Ki-Hwan;Ahn, Hyeung-Ken;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.68-68
    • /
    • 2010
  • To reduce PV manufacturing costs, the thickness of solar cell is getting thinner. Bow is shown after cooling down the temperature of solder cell. It happens because of different thermal expansion coefficients of different metals. Bowed cell can make micro crack while module processing and it can drop off efficiency of PV module. As thinner solar cell is produced, the thickness of ribbon should be concerned to prevent extra bow. In this paper we investigate the contrast of deflection when we solder different thickness of ribbons on same solar cell. This approach would help to find out the optical thickness of ribbon for particular thickness of solar cell later on.

  • PDF

Improvement of Solar Cell Efficiency according to AC Voltage Variation of Electron Relay Enhancer in High Efficient Solar Cell System using Electron Relay Enhancer (전자전달증대기를 이용한 고효율 태양전지 시스템에서 전자전달증대기 입력 교류 전압 변화에 따른 태양전지 효율 향상에 대한 연구)

  • Kim, Hak Soo;Ryu, Young Kee;Lee, Hyuk;Yun, So Young
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.168-173
    • /
    • 2013
  • In this paper, we would like to introduce Electron Relay Enhancer (ERE), a supplementary device, which improves commercial solar cell efficiency minimizing electron-hole recombination of solar cell. The ERE in this study is mainly composed of two capacitors which are connected to AC power source and bridge diode system which controls electron flow direction. Two capacitors repeat collecting electrons from solar cell and pumping the collected electrons to load resistance or inverter through the bridge diode system. While one positively charged capacitor collect electrons, the other negatively charged one pumps electrons. A positively charged capacitor pulls the more exited electrons from the solar cell, before the exited electrons recombine the holes in solar cell. That is why the ERE system enhances solar cell efficiency. As a result, the measured power increase of the solar cell with the ERE is varied from 5.9 W to 25.6 W in each experimental condition. Maximal increase rate of the solar cell power with ERE is 30.8% of solar cell power without ERE.

PC1D 기반의 재결합 속도 제어를 통한 결정질 태양전지의 최적화

  • Lee, Ji-Seong;Jeong, U-Won;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.257-257
    • /
    • 2009
  • This paper explores a control of recombination velocity for optimization the crystalline solar cell. Using PC1D simulator, the efficiency of crystalline solar cell was measured to be about 17%. The results show that the lower the front recombination velocity is, the more efficiency of crystalline solar cell improves. The work which presented here has profound implications for studies of crystalline solar cell and someday may help solve the problem of optimization for the crystalline solar cells.

  • PDF

A Study of High-efficiency me-silicon solar cells for SiNx passivation (SiNx passivation에 따른 Solar Cell의 효율향상에 관한 연구)

  • Ko, Jae-Kyung;Lim, Dong-Gun;Kim, Do-Young;Park, Sung-Hyun;Park, Joong-Hyun;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.964-967
    • /
    • 2002
  • The effectiveness of silicon nitride SiNx surface passivation is investigated and quantified. This study adopted single-layer antireflection (SLAR) coating of SiNx for efficiency improvement of solar cell. The silicon nitride films were deposited by means of plasma enhanced chemical vapor deposition (PECVD) in planar coil reactor. The process gases used were pure ammonia and a mixture of silane and helium. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment. This films obtained were analyzed in term of hydrogen content, refractive index for gas flow ratio $(NH_3/SiH_4)$, and efficiency of solar cell. The polycrystalline silicon solar cells passivated by silicon nitride shows efficiency above 12.8%.

  • PDF

A Study on the Architectural Design Plans Using BIPV (BIPV를 활용한 건축물 디자인 계획에 관한 연구)

  • Juen, Guen-Sik;Ryu, Soo-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, features and design effects of PV(Photovoltaic) modules were classified to help the installation of BIPV(Building Integrated Photovoltaic) In addition, through domestic and international trends and cases survey, installation method was organized and applicable range of efficiency and design from First-generation solar cells to the third-generation solar cell was classified. Frist, Crystalline Solar cell module of first-generation is appropriate for the wall type, roof, louver, shading and etc. It has superiority of technology and price stability and can be achieved by a variety of aesthetic effects. Second, Dye-Sensitized Solar Cell of Thin Film solar cell can express a variety of colors, adjust light transmittance and maximize the aesthetic splendor. It is appropriate for the wall type, window type, curtain wall type and etc. Also, see-through type solar cell can provide comforts cause of free flow of light. And it is advantageous from economic due to adjust the indoor temperature. It is appropriate for the atrium type, curtain wall type, window type and etc.

Batteryless Receiver using Solar Cells for Visible Light Communication (Solar Cell을 응용한 배터리 없는 가시광 통신용 수신기)

  • Jeong, You-Jin;Shin, Jung-Min;Han, Sang-Kyoo;Sakong, Suk-Chin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.66-67
    • /
    • 2017
  • 본 논문은 Solar Cell을 응용하여 통신기능과 함께 전원공급이 가능한 배터리 없는 가시광 통신용 수신기를 제안한다. 기존 포토다이오드(PD : Photo Diode)를 적용한 가시광 통신용 수신기는 수신신호 처리를 위한 PD 드라이버와 신호 처리부를 동작시키기 위하여 별도의 전원 회로와 배터리가 필요하다. 따라서, 체적 및 비용의 증가가 불가피하여 가시광 통신의 큰 문제점으로 대두되고 있다. 하지만 제안회로는 PD를 Solar Cell로 대체하여 기존의 신호를 수신함과 동시에 Solar Cell의 광전효과를 통해 생성된 전력을 사용하여 별도의 부가회로 없이 전원 공급이 가능하며 무선통신 기술의 새로운 패러다임을 제시한다. 제안된 회로의 타당성 검증을 위해 Solar Cell을 응용한 시작품을 제작하여 실험 결과를 제시한다.

  • PDF

Power Supply for White GaN LED by Using SMD Type Solar Cell Array (SMD 타입 태양전지 어레이를 이용한 white GaN LED용 전원 공급 장치)

  • Kim, Seong-Il;Lee, Yoon-Pyo
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.34-37
    • /
    • 2009
  • Using six SMD(surface mount device) type AlGaAs/GaAs single junction solar cells connected in series, a power source was fabricated for a white GaN LED. The electrical properties of the power source was measured and analyzed under one sun (100mW/$cm^2$) and various indoor light (300 - 900 lux) conditions. Under 600 lux indoor light condition, output power was 17.06 ${\mu}W$ and it was 30.75 ${\mu}W$ under 900 lux indoor light condition. Using the fabricated solar cell power supply, we have turned on the white GaN LED. It was worked well under 15 ${\mu}W$(at 480 lux) power supplied from solar cell array. This kind of solar cell power supply can be used as a power source for ubiquitous sensor network (USN).

  • PDF

Power Output in Various Types of Solar Panels in the Central Region of Korea (한국 중부 지역의 태양광 모듈 타입에 따른 발전량 특성)

  • Chang, Hyo Sik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Solar panels are modules made up of many cells, like the N-type monosilicon, P-type monosilicon, P-type multisilicon, amorphous thin-film silicon, and CIGS solar cells. An efficient photovoltaic (PV) power is important to use to determine what kind of cell types are used because residential solar systems receive attention. In this study, we used 3-type solar panels - such as N-type monosilicon, P-type monosilicon, and CIGS solar cells - to investigate what kind of solar panel on a house or building performs the best. PV systems were composed of 3-type solar panels on the roof with each ~1.8 kW nominal power. N-type monosilicon solar panel resulted in the best power generation when monitored. Capacity Utilization Factor (CUF) and Performance Ratio (PR) of the N-type Si solar panel were 14.6% and 75% respectively. In comparison, N-type monosilicon and CIGS solar panels showed higher performance in power generation than P-type monosilicon solar power with increasing solar irradiance.