• Title/Summary/Keyword: SOIL PROFILE

Search Result 490, Processing Time 0.028 seconds

Analysis of Soil-Structure Interaction Considering Complicated Soil Profile (복잡한 지층 형상을 고려한 지반-구조물 상호작용 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.87-93
    • /
    • 2006
  • When a structure is constructed at the site composed of soil, the behavior of a structure is much affected by the characteristics of soil. Therefore, the effect of soil-structure interaction is an important consideration in the design of a structure at the site composed of soil. Precise analysis of soil-structure interaction requires a proper description of soil profile. However, most of approaches are nearly unpractical for soil exhibiting material discontinuity and complex geometry since those cannot consider precisely complicated soil profiles. To overcome these difficulties, an improved integration method is adopted and enables to integrate easily over an element with material discontinuity. As a result the mesh can be generated rapidly and highly structured, leading to regular and precise stiffness matrix. The influence of soil profile on the response is examined by the presented method. It is seen that the presented method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

불교란 토양시료의 불포화대 수리전도도-유효공극율의 상판관계 분석

  • Lee Byeong-Seon;Lee Gi-Cheol;Lee Myeong-Ha;Lee Ju-Yeong;Kim Jeong-Hui;U Nam-Chil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.411-414
    • /
    • 2006
  • This study was examined to determine hydraulic conductivity of vadose zone($K_s$) and effective porosity(${\phi}_e$) of undisturbed soil profiles collected at each vadose zone of 6 study areas in South Korea. Effective porosity was approximately 19% of total porosity for each soil profile. Applied to Ahuja's equation, the correlation between $K_s$ and ${\phi}_e$ showed $y=1.3{\times}10^{-7}x^{2.15}(r^2=0.37)$ for total soil profiles. Although the small numbers of soil profile were used for this study, the result of this study might be used for other soil hydraulic studies as reasonable data.

  • PDF

Relation between Radar Backscattering Coefficients and Surface Profile Length for Bare Soil Surfaces Using Theoretical Predictions and Measurement Data (토양 표면에서의 레이더 산란 계수와 표면 거칠기 측정 길이의 관계에 대한 이론 모델과 측정 데이터의 비교)

  • Oh, Yi-Sok;Hong, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1181-1188
    • /
    • 2006
  • The radar backscattering coefficients of soil surfaces with various roughness conditions are computed at first in this paper. The roughness parameters for various surface-profile lengths are also obtained. Then, the relationship between the radar backscattering coefficients and the profile length is studied. It was shown that the effect of the profile length is negligible on the backscattering coefficient, even though the roughness parameters vary a lot with the length of the surface profile.

Earthquake Response Analysis considering Irregular Soil Layers (불규칙한 다층 물성을 가지는 지반의 지진 응답 해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.67-73
    • /
    • 2005
  • Precise analysis of soil-structure interaction requires a proper description of soil profile. However, such approach becomes generally nearly unpractical for soil exhibiting material discontinuity and complex geometry since meshes should match that material discontinuity line. To overcome these difficulties, a different numerical integration method is adopted in this paper, which enables to integrate easily over an element with material discontinuity without regenerating mesh fellowing the discontinuity line. As a result the mesh is highly structured, loading to very regular silliness matrix. The influence of the shape of soil profile on the response is examined and it is seen that the proposed soil-structure analysis method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion (비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향)

  • 김용석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

Improvement of Physicochemical Properties and Turfgrass Growth by Root Zone Mixture of Soil Amendment 'Profile' (토양개량제 '프로파일'의 혼합에 따른 토양의 물리화학성 및 한지형 잔디의 생육 개선)

  • Kim, Young-Sun;Lim, Hye-Jung;Ham, Soun-Kyu;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.262-271
    • /
    • 2017
  • This study was conducted to evaluate incorporation ratio of soil amendment 'Profile' to improve soil physicochemical properties and turfgrass growth. The soil amendment was added 0 (sand only), 3, 5, 7, and 10% to USGA Green-spec green sand soil. As incorporated with more 'Profile' amendment, soil electrical conductivity (EC), cation exchangeable capacity (CEC), capillary porosity and total porosity of root zone were increased than those of control, while bulk density and hydraulic conductivity decreased. Turfgrass index and clipping yield of creeping bentgrass grown in sand soil incorporated with 7% 'Profile' were improved than those of control. Correlation coefficient of turf color index and incorporation ratio of the soil amendment 'Profile' was found to show significantly positive correlation. These results indicated that application of the soil amendment 'Profile' to sand soil in golf course green improved turfgrass growth and quality by increasing CEC and porosity of root zone.

논에서의 영양물질 배출량 추정( I ) - 모형의 개발 -

  • Chung, Sang-Ok;Kim, Hyeon-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • The objective of this study is to develop GLEANS-PADDY model to predict nutrients loading from paddy-field areas. This model is developed by modifying the GLEANS model which is used for uplands, and composed of hydrology and nutrient submodels. The optimal field size for CLEANS-PADDY model application is about up to 50 ha with mild slope, relatively homogeneous Soils and spatially rainfall, and a single crop farming. The CLEAMS model is modified to handle ponded soil surface condition and saturated soil profile in paddy field. In the hydrology submodel of the CLEAMS-PADDY model. the ponded depth routing method is used to handle the ponded water condition of paddy field. To compute potential evapotranspiration the FAO-24 Corrected Blaney-Criddle method is used for paddy field instead of Penman-Monteith method in the CLEAMS model. In the nutrients submodel of the CLEAMS-PADDY model, the soil was assumed saturated and soil profile in the root zone was divided into oxidized and reduced zones.

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

Physico-chemical Properties of Disturbed Plastic Film House Soils under Cucumber and Grape Cultivation as Affected by Artificial Accumulation History

  • Han, Kyung-Hwa;Ibrahim, Muhammad;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Hur, Seung-Oh;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.105-118
    • /
    • 2015
  • This study was carried out to investigate the effects of profile disturbance with different artificial accumulation history on physico-chemical properties of soil under plastic film house. The investigations included soil profile description using soil column cylinder auger F10cm x h110cm, in situ and laboratory measurements of soil properties at five sites each at the cucumber (Site Ic ~ Vc) and grape (Site Ig ~ Vg) plastic film houses with artificial soil accumulation. The sites except sites Ic, IVc, IVg and Vg, belong to ex-paddy area. The types of accumulates around root zone included sandy loam soil for 3 sites, loam soil for 1 site, saprolite for 2 sites, and multi-layer with different accumulates for 3 sites. Especially, Site IIg has mixed plow zone (Ap horizon) with original soil and saprolite, whereas disturbed soil layers of the other sites are composed of only external accumulates. The soil depth disturbed by artificial accumulation ranged from 20 cm, for Site IIg, to whole measured depth of 110 cm, for Site IVc, Vc, and Site IVg. Elapsed time from artificially accumulation to investigation time ranged from 3 months, Site IIc, to more than 20 years, Site Vg, paddy-soil covering over well-drained upland soil during land leveling in 1980s. Disturbed top layer in all sites except Site Vg had no structure, indicating low structural stability. In situ infiltration rate had no correlation with texture or organic matter content, but highest value with highest variability in Site IIIc, the shortest elapsed time since sandy loam soil accumulation. Relatively low infiltration rate was observed in sites accumulated by saprolite with coarse texture, presumably because its low structural stability in the way of weathering process could result in relatively high compaction in agro-machine work or irrigation. In all cucumber sites, there were water-transport limited zone with very low permeable or impermeability within 50 cm under soil surface, but Site IIg, IIIg, and Vg, with relatively weak disturbance or structured soil, were the reverse. We observed the big change in texture and re-increase of organic matter content, available phosphate, and exchangeable cations between disturbed layer and original soil layer. This study, therefore, suggest that the accumulation of coarse material such as saprolite for cultivating cash crop under plastic film house might not improve soil drainage and structural stability, inversely showing weaker disturbance of original soil profile with higher drainage.

Dynamic Analysis of Soil-Structure System Considering Characteristics of Structure and Complicated Soil Profile (구조물과 복잡한 지층 특성을 고려한 지반-구조물 시스템의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.50-56
    • /
    • 2007
  • In the past, a number of approaches, such as analytical, numerical or experimental methods, have been developed to deal with the soil-structure interaction effects. However, for many problems with complex geometry and material discontinuity most of approaches are nearly unpractical since it is difficult to model structures and complicated soil profiles precisely. This paper presents a soil-structure interaction analysis approach, which carl consider precisely characteristics of structures and complicated soil profiles. The presented approach overcomes the difficulties by adopting an unaligned mesh generation approach. From numerical examples, the applicability of the proposed approach is validated and dynamic responses of soil-structure systems subjected to earthquake loading are investigated considering characteristics of structures and complicated soil profiles.