• 제목/요약/키워드: SOIL COMPACTION

검색결과 642건 처리시간 0.023초

진동가속도계를 이용한 지반다짐 특성 연구 (Study on Characteristics of Soil Compaction using Accelerometer)

  • 채광석;신동훈;임은상;구자덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1397-1403
    • /
    • 2008
  • Soil compaction works are essential to construction of dams, breakwaters and roads in order to avoid unexpected settlement/deformation of superstructures. Taking advantage of oscillating accelerometer, this research was made to complement existing methods for assessment of soil stiffness. In order to examine the validity of compaction-degree suggested in the study, tests on vibration characteristics using accelerometers was also performed. Test results for sand and gravel mixtures and Korean standard sands were compared and evaluated by conventional assessment methods under varying conditions as of input frequency, size of loading plate and relative density.

  • PDF

C.G.S에 의한 기초지반보강효과에 관한 연구 (A Study on the Ground Improvement by Compaction Grouting System)

  • 천병식;여유현;최현석;오일석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 연약지반처리위원회 학술세미나
    • /
    • pp.1-13
    • /
    • 1999
  • The use of Compaction Grouting evolved in the 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major uses of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other application include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. The technique replaced slurry injection, or 'pressure grouting', as the preferred method of densification grouting. There are several reasons for the increased use of Compaction Grouting which can be summarized in one word: CONTROL. The low slump grout and injection processes are usually designed to keep the grout in a homogeneous mass at the point of injection, while acceptable in some limited applications, tends to quickly get out of control. Hydraulic soil fracturing can cause extensive grout travel, often well beyond the desired treatment zone. So, on the basis of the two case history constructed in recent year, a study has been peformed to analyze the basic mechanism of the Compaction Grouting and verify the effectiveness of the ground improvement using some test methods.

  • PDF

Delayed compaction effect on the strength and dynamic properties of clay treated with lime

  • Turkoz, Murat
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.471-480
    • /
    • 2019
  • The constructions of engineering structures such as airports, highways and railway on clayey soils may create many problems. The economic losses and damages caused by these soils have led researchers to do many studies using different chemical additives for the stabilization of them. Lime is a popular additive used to stabilize the clayey soils. When the base course is stabilized by mixing with an additive, inevitable delays may occur during compaction due to reasons like insufficient workers, breakdown of compaction equipment, etc. The main purpose of this study is to research the effect of compaction delay time (7 days) on the strength, compaction, and dynamic properties of a clay soil stabilized with lime content of 0, 3, 6, 9, 12 and 15% by dry weight of soil. Compaction characteristics of these mixes were determined immediately after mixing, and after 7 days from the end of mixing process. Within this context, unconfined compressive strength (UCS) under the various curing periods (uncured, 7 and 28 days) and dynamic triaxial tests were performed on the compacted specimens. The results of UCS and dynamic triaxial tests showed that delayed compaction on the strength of the lime-stabilized clay soil were significantly effective. Especially with the lime content of 9%, the increase in the shear modulus (G) and UCS of 28 days curing were more prominent after 7 days mellowing period. Because of the complex forms of hysteresis loops caused by the lime additive, the damping ratio (D) values differed from the trends presented in the literature and showed a scattered relationship.

강원도에 분포하는 화강토의 다짐특성 및 토질정수의 상관관계에 관한 연구 (A Study on Correlations between Compaction Properties and Soil Constants of Granite Soil in the Kangwon Province)

  • 유남재;박병수;홍영길
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.77-86
    • /
    • 1998
  • This study is to provide the useful data for the design and construction of the geotechnical engineering works by collecting and analyzing the soil properties of granite soil in the Kangwon Province. Data base was obtained from 92 field sites in the Kangwon province divided into 15 areas based on administration district. Total numbers of data were 478. Correlations between soil constants, especially compaction properties, were obtained by performing statistical analysis. Analyzed results were as follows. 1. Most of granite soil consists of SM and GM based on United Soil Classification System. 2. Mean gravity of granite soil is 2.65 3. High correlations between optimum moisture content and the maximum dry density, plasticity index and liquid limit are obtained. 4. Analyzed results between other soil constants show relatively low correlation. However, they show consistent trends matchable to geotechnical engineering senses.

  • PDF

사질토 지반의 상대다짐도 및 토층에 따른 연직지중응력 분포 특성 (Characteristics of Vertical Stress Distribution in Sandy Soil According to the Relative Compaction and Composition of the Soil Layer)

  • 남효석;이상호
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.43-50
    • /
    • 2010
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of foundation condition in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to circular uniform load, the vertical stress increments ($\Delta\sigma_z$) was increased as load increasing, the maximum values of $\Delta\sigma_z$ was achieved at the point loading axis, and $\Delta\sigma_z$ was not shown over at a distance of three times of loading plate width (B). The vertical stress increments were achieved largely at 80 % relative compaction (Rc) compared to 95 % relative compaction due to stress concentration in sandy soil. When sandy soil subjected to circular uniform load, the $\Delta\sigma_z$ differences between theoretical and experimental values as load increased were more increased and its maximum differences were achieved at stress axis. When gravel surface macadamized over sandy soil subjected to load, the $\Delta\sigma_z$ was concentrated to load axis as load increasing, so that macadamization will be decreased load transmission.

동적 지반물성측정장치(SIH, Soil Impact Hammer)의 국내 적용성 평가 (Investigation of Domestic Application for Soil Impact Hammer(SIH))

  • 박재영;석정우;황대진;양구승
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.411-418
    • /
    • 2002
  • In domestic road construction sites, the compaction control based on strength are widely performed through the direct method with high accuracy, such as Plate Loading Test or Field CBR test. It is impossible to manage all construction sites using the direct method because the direct method requires heavy reaction loads and long measurement time. Therefore, it is necessary to apply the indirect method that could control the relative density of construction sites on the whole. Indirect methods, such as Cone Penetration Test and Fall Cone Test, require extra time for data analyzing and fixed area for test device. In this paper, the field applicability of Soil Impact Hammer (SIH) was investigated comparing with the results of field measurement tests and laboratory compaction tests. SIH developed by Japan Construction Administration and Asanuma Ltd., is a kind of indirect methods for compaction checking. According to the results of SIH performed in domestic road construction site, the subgrade reaction modulus obtained from SIH are similar to that from Plate loading tests in the range of 10 to 40. In comparison with laboratory compaction test, similar compaction line are shown in the dry side of optimum moisture contents.

  • PDF

분열 프랙탈을 이용한 다짐 에너지의 영향 분석 - 입도, 다짐도 및 투수특성을 중심으로 - (Analysis of Effect of Compaction Energy on Characters of Grain Size Distribution, Compaction and Permeability Using Fragmentation Fractal)

  • 노수각;손영환;장병욱;김성필
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.59-67
    • /
    • 2006
  • Particles of soil are crushed when soil is compacted in the in-situ or lab. Among many factors that affect the crush of particles, compaction energy is a major factor. Because the crush of particles can change physical properties, the analysis of effect of compaction energy is very important. In this study, the fragmentation fractals were used for determining the change in grain size distribution and the effect due to change in grain size distribution was estimated. Compaction energy was increased by 50, 100, 200 and 300% based on the energy of standard A compaction test. As a result, grain size distribution curves were changed and fine particles increased as compaction energy were increased. Relative compaction were ranged between $93.38{\sim}107.67$. Fractal dimension of each site increased as compaction energy increased. Relative compaction is proportional to the fractal dimension but coefficients of permeability were in inverse proportional to the involution of fractal dimension.

시공조건이 시멘트계 고화토의 투수계수에 미치는 영향 (Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications)

  • 정문경;김강석;우제윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

유기물이 혼합된 풍화토의 다짐특성에 관한 연구 (Compaction Characteristics of Weathered Soil Mixed with Organic Material)

  • 박판영;권호진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1175-1180
    • /
    • 2008
  • This study explored the compacition characteristics of organic weathered soils. Weathered soils were collected around the Gwangju University in Jinwol-dong, Gwangju city, and coal was used as organic material. Weathered soils were mixed with coal so that the ratio of organic elements against mixed soil can be 0%, 25%, 50%, and 75% respectively. Compaction tests were carried out on these organic mixture soils in different ratios of organic materials. And soap water instead of water in compaction tests was used. Through this study, We knew that the bigger the organic material ratio was, the more the optimum moisture content increased and the less the maximum dry unit weight reduced. In case of using small compaction energy, using soap water instead of water improved the compaction efficiency a little.

  • PDF

함수비에 따른 토양의 다짐도와 경도의 관계를 이용한 철항의 인발저항력 예측 연구 (Prediction of Pull-Out Force of Steel Pegs Using the Relationship Between Degree of Compaction and Hardness of Soil Conditioned on Water Content)

  • 최인혁;허기석;이진영;곽동엽
    • 한국지반공학회논문집
    • /
    • 제39권12호
    • /
    • pp.23-35
    • /
    • 2023
  • 농림축산식품부는 강풍에 의한 비닐하우스의 인발파괴에 대응하기 위해 30년 빈도의 풍속에 대비할 수 있는 내재해형 비닐하우스 설계 기준을 고시하였다. 하지만 여전히 많은 비닐하우스가 기존 규격시설인 농가 보급·지도형으로 유지 및 신설되고 있다. 농가 보급·지도형 비닐하우스에는 인발파괴에 저항하기 위한 보강 수단으로 소형말뚝 종류 중 하나인 철항이 사용된다. 철항의 인발저항력은 토양의 환경과 철항의 관입 형태에 따라 변화한다. 이번 연구에서는 양토와 사양토에 설치되는 철항의 인발저항력을 토양경도계를 사용하여 유추할 수 있는 상관관계를 제시하였다. 토양의 환경인 함수비와 다짐도에 따른 철항의 인발저항력을 유추하기 위해 흙의 다짐시험과 모형토조시험, 현장시험을 수행하였다. 흙의 다짐도를 간단하게 확인할 수 있는 토양경도계를 사용하여 다짐도를 측정하였으며, 이를 이용하여 흙의 다짐시험과 모형토조의 다짐도에 대한 상관관계를 분석하였다. 또한, 모형토조에서의 철항의 인발저항력으로 현장에서의 인발저항력을 추정하는 상관관계를 제시하였다. 이번 논문의 결과는 환경 변화에 따른 철항의 관입 형태별 인발저항력의 예측에 활용될 것으로 기대된다.