• 제목/요약/키워드: SOI (silicon-on-insulator)

검색결과 202건 처리시간 0.031초

Strained-SOI(sSOI) n-/p-MOSFET에서 캐리어 이동도 증가 (Carrier Mobility Enhancement in Strained-Si-on-Insulator (sSOI) n-/p-MOSFETs)

  • 김관수;정명호;최철종;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.73-74
    • /
    • 2007
  • We fabricated strained-SOI(sSOI) n-/p-MOSFETs and investigated the electron/hole mobility characteristics. The subthreshold characteristics of sSOI MOSFETs were similar to those of conventional SOI MOSFET. However, The electron mobility of sSOI nMOSFETs was larger than that of the conventional SOI nMOSFETs. These mobility enhancement effects are attributed to the subband modulation of silicon conduction band.

  • PDF

SiGe/Si 이종접합구조의 채널을 이용한 SOI n-MOSFET의 DC 특성 (DC Characteristic of Silicon-on-Insulator n-MOSFET with SiGe/Si Heterostructure Channel)

  • 최아람;최상식;양현덕;김상훈;이상흥;심규환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.99-100
    • /
    • 2006
  • Silicon-on-insulator(SOI) MOSFET with SiGe/Si heterostructure channel is an attractive device due to its potent use for relaxing several limits of CMOS scaling, as well as because of high electron and hole mobility and low power dissipation operation and compatibility with Si CMOS standard processing. SOI technology is known as a possible solution for the problems of premature drain breakdown, hot carrier effects, and threshold voltage roll-off issues in sub-deca nano-scale devices. For the forthcoming generations, the combination of SiGe heterostructures and SOI can be the optimum structure, so that we have developed SOI n-MOSFETs with SiGe/Si heterostructure channel grown by reduced pressure chemical vapor deposition. The SOI n-MOSFETs with a SiGe/Si heterostructure are presented and their DC characteristics are discussed in terms of device structure and fabrication technology.

  • PDF

열처리 방법에 따른 이종절연층 실리콘 기판쌍의 직접접합 (Direct Bonding of Heterogeneous Insulator Silicon Pairs using Various Annealing Method)

  • 송오성;이기영
    • 한국전기전자재료학회논문지
    • /
    • 제16권10호
    • /
    • pp.859-864
    • /
    • 2003
  • We prepared SOI(silicon-on-insulator) wafer pairs of Si II SiO$_2$/Si$_3$N$_4$ II Si using wafer direct bonding with an electric furnace annealing(EFA), a fast linear annealing(FLA), and a rapid thermal annealing(RTA), respectively, by varying the annealing temperatures at a given annealing process. We measured the bonding area and the bonding strength with processes. EFA and FLA showed almost identical bonding area and theoretical bonding strength at the elevated temperature. RTA was not bonded at all due to warpage, We report that FLA process was superior to other annealing processes in aspects of surface temperature, annealing time, and bonding strength.

SOI웨이퍼의 마이크로가속도계 센서에 대한 열변형 유한요소해석 (Finite Element Analysis of Thermal Deformations for Microaccelerometer Sensors using SOI Wafers)

  • 김옥삼;구본권;김일수;김인권;박우철
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.12-18
    • /
    • 2002
  • Silicon on insulator(SOI) wafer is used in a variety of microsensor applications in which thermal deformations and other mechanical effects may dominate device Performance. One of major Problems associated with the manufacturing Processes of the microaccelerometer based on the tunneling current concept is thermal deformations and thermal stresses. This paper deals with finite element analysis(FEA) of residual thermal deformations causing popping up, which are induced in micrormaching processes of a microaccelerometer. The reason for this Popping up phenomenon in manufacturing processes of microaccelerometer may be the bending of the whole wafer or it may come from the way the underetching occurs. We want to seek after the real cause of this popping up phenomenon and diminish this by changing manufacturing processes of mic개accelerometer. In microaccelerometer manufacturing process, this paper intend to find thermal deformation change of the temperature distribution by tunnel gap and additional beams. The thermal behaviors analysis intend to use ANSYS V5.5.3.

NMOSFET SOI 소자의 Current Kink Effect 감소에 관한 연구 (A Study on the Reduction of Current Kink Effect in NMOSFET SOI Device)

  • 한명석;이충근;홍신남
    • 전자공학회논문지T
    • /
    • 제35T권2호
    • /
    • pp.6-12
    • /
    • 1998
  • 박막의 SOI(Silicon-On-Insulator) 소자는 짧은 채널 효과(short channel effect), subthreshold slope의 개선, 이동도 향상, latch-up 제거 등 많은 이점을 제공한다. 반면에 이 소자는 current kink effect와 같이 정상적인 소자 동작에 있어 주요한 저해 요소인 floating body effect를 나타낸다. 본 논문에서는 이러한 문제를 해결하기 위해 T-형 게이트 구조를 갖는 SOI NMOSFET를 제안하였다. T-형 게이트 구조는 일부분의 게이트 산화막 두께를 다른 부분보다 30nm 만큼 크게 하여 TSUPREM-4로 시뮬레이션 하였으며, 이것을 2D MEDICI mesh를 구성하여 I-V 특성 시뮬레이션을 시행하였다. 부분적으로 게이트 산화층의 두께가 다르기 때문에 게이트 전계도 부분적으로 차이가 발생되어 충격 이온화 전류의 크기도 줄어든다. 충격 이온화 전류가 감소한다는 것은 current kink effect가 감소하는 것을 의미하며, 이것을 MEDICI 시뮬레이션을 통해 얻어진 충격 이온화 전류 곡선, I-V 특성 곡선과 정공 전류의 분포 형태를 이용하여 제안된 구조에서 current kink effect가 감소됨을 보였다.

  • PDF

CMOS Microcontroller IC와 고밀도 원형모양SOI 마이크로센서의 단일집적 (A Monolithic Integration with A High Density Circular-Shape SOI Microsensor and CMOS Microcontroller IC)

  • 이명옥;문양호
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 1997
  • It is well-known that rectangular bulk-Si sensors prepared by etch or epi etch-stop micromachining technology are already in practical use today, but the conventional bulk-Si sensor shows some drawbacks such as large chip size and limited applications as silicon sensor device is to be miniaturized. We consider a circular-shape SOI(Silicon-On-Insulator) micro-cavity technology to facilitate multiple sensors on very small chip, to make device easier to package than conventional sensor like pressure sensor and to provide very high over-pressure capability. This paper demonstrates the cross-functional results for stress analyses(targeting $5{\mu}m$ deflection and 100MPa stress as maximum at various applicable pressure ranges), for finding permissible diaphragm dimension by output sensitivity, and piezoresistive sensor theory from two-type SOI structures where the double SOI structure shows the most feasible deflection and small stress at various ambient pressures. Those results can be compared with the ones of circular-shape bulk-Si based sensor$^{[17]}. The SOI micro-cavity formed the sensors is promising to integrate with calibration, gain stage and controller unit plus high current/high voltage CMOS drivers onto monolithic chip.

  • PDF

Ultrathin-Body SOI MOSFETs에서 면방향에 따른 정공의 이동도 증가 (Hole Mobility Enhancement in (100)- and (110)-surfaces of Ultrathin-Body Silicon-on-Insulator Metal-Oxide-Semiconductors)

  • 김관수;구상모;정홍배;정종완;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.7-8
    • /
    • 2007
  • We investigated the characteristics of UTB-SOI pMOSFETs with SOI thickness ($T_{SOI}$) ranging from 10 nm to 1 nm and evaluated the dependence of electrical characteristics on the silicon surface orientation. As a result, it is found that the subthreshold characteristics of (100)-surface UTB-SOI pMOSFETs were superior to (110)-surface. However, the hole mobility of (110)-surface were larger than that of (100)-surface. The enhancement of effective hole mobility at the effective field of 0.1 MV/ccm was observed from 3-nm to 5-nm SOI thickness range.

  • PDF

Electrical and Photoluminescence Characteristics of Nanocrystalline Silicon-Oxygen Superlattice for Silicon on Insulator Application

  • Seo, Yong-Jin
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권5호
    • /
    • pp.258-261
    • /
    • 2002
  • Electrical forming dependent current-voltage (I-V) and numerically derived differential conductance(dI/dV) characteristics have been presented in the multi-layer nano-crystalline silicon/oxygen (no-Si/O) superlattice. Distinct staircase-like features, indicating the presence of resonant tunnel barriers, are clearly observed in the dc I-V characteristics. Also, all samples showed a continuous change in current and zero conductivity around OV corresponding to the Coulomb blockade in the calculated dI/dV-V curve. Also, Ra-man scattering measurement showed the presence of a nano-crystalline Si structure. This result becomes a step in the right direction for the fabrication of silicon-based optoelectronic and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in high speed and low power silicon MOSFET devices of the future.

A New SOI LDMOSFET Structure with a Trench in the Drift Region for a PDP Scan Driver IC

  • Son, Won-So;Kim, Sang-Gi;Sohn, Young-Ho;Choi, Sie-Young
    • ETRI Journal
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2004
  • To improve the characteristics of breakdown voltage and specific on-resistance, we propose a new structure for a LDMOSFET for a PDP scan driver IC based on silicon-on-insulator with a trench under the gate in the drift region. The trench reduces the electric field at the silicon surface under the gate edge in the drift region when the concentration of the drift region is high, and thereby increases the breakdown voltage and reduces the specific on-resistance. The breakdown voltage and the specific on-resistance of the fabricated device is 352 V and $18.8 m{\Omega}{\cdot}cm^2$ with a threshold voltage of 1.0 V. The breakdown voltage of the device in the on-state is over 200 V and the saturation current at $V_{gs}=5V$ and $V_{ds}$=20V is 16 mA with a gate width of $150{\mu}m$.

  • PDF

Plasma Etch Damage가 (100) SOI에 미치는 영향의 C-V 특성 분석 (C-V Characterization of Plasma Etch-damage Effect on (100) SOI)

  • 조영득;김지홍;조대형;문병무;조원주;정홍배;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제21권8호
    • /
    • pp.711-714
    • /
    • 2008
  • Metal-oxide-semiconductor (MOS) capacitors were fabricated to investigate the plasma damage caused by reactive ion etching (RIE) on (100) oriented silicon-on-insulator (SOI) substrates. The thickness of the top-gate oxide, SOI, and buried oxide layers were 10 nm, 50 nm, and 100 nm, respectively. The MOS/SOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching. The measured C-V curves were compared to the numerical results from corresponding 2-dimensional (2-D) structures by using a Silvaco Atlas simulator.