• 제목/요약/키워드: SOFCs

검색결과 135건 처리시간 0.024초

Oxygen Potential Gradient Induced Degradation of Oxides

  • Martin, Manfred
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.29-36
    • /
    • 2012
  • In many applications of functional oxides originally homogeneous materials are exposed to gradients in the chemical potential of oxygen. Prominent examples are solid oxide fuel cells (SOFCs) or oxygen permeation membranes (OPMs). Other thermodynamic potential gradients are gradients of electrical potential, temperature or uni-axial pressure. The applied gradients act as generalized thermodynamic forces and induce directed fluxes of the mobile components. These fluxes may lead to three basic degradation phenomena of the materials, which are kinetic demixing, kinetic decomposition, and morphological instabilities.

고체 산화물 연료전지를 위한 물성치 및 전기화학반응의 수치해석 모델링 (Numerical Modeling of Physical Property and Electrochemical Reaction for Solid Oxide Fuel Cells)

  • 박준근;김선영;배중면
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.157-163
    • /
    • 2010
  • 고체산화물연료전지는 세라믹 물질로 이루어지며, 세라믹 물질의 물성치는 작동조건에 따라 달라진다. 따라서, 높은 신뢰성을 가지는 시뮬레이션 모델을 개발하기 위해서는 세라믹 물질의 물성치를 정확하게 예측할 수 있어야한다. 본 논문에서는 고체산화물연료전지의 성능에 영향을 미치는 여러가지 물성치를 선택하고 그 물성치를 위한 시뮬레이션 모델이 개발되었다. 개회로전압을 위한 깁스에너지, 활성화손실을 위한 교환전류밀도, 저항손실을 위한 전기전도도가 계산되었다. 또한, 다공성 전극 내부의 물질전달 해석을 위해서 분자확산과 누센확산을 함께 고려하는 유효확산계수가 계산되었다. 이러한 계산과정 후에 물성치 모델과 전기화학반응 모델이 동시에 시뮬레이션 되었다. 해석코드의 검증을 위해서 전산해석 결과는 실험결과 및 Chan 등에 의해서 수행된 이전 연구결과와 비교되었다.

Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가 (Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated)

  • 오미영;;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Maximizing TPBs through Ni-self-exsolution on GDC based composite anode in solid oxide fuel cells

  • 탄제완;이대희;김보경;김주선;문주호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.402.1-402.1
    • /
    • 2016
  • The performance of solid oxide fuel cells (SOFCs) is directly related to the electrocatalytic activity of composite electrodes in which triple phase boundaries (TPBs) of metallic catalyst, oxygen ion conducting support, and gas should be three-dimensionally maximized. The distribution morphology of catalytic nanoparticle dispersed on external surfaces is of key importance for maximized TPBs. Herein in situ grown nickel nanoparticle onto the surface of fluorite oxide is demonstrated employing gadolium-nickel co-doped ceria ($Gd0.2-xNixCe0.8O2-{\delta}$, GNDC) by reductive annealing. GNDC powders were synthesized via a Pechini-type sol-gel process while maximum doping ratio of Ni into the cerium oxide was defined by X-ray diffraction. Subsequently, NiO-GNDC composite were screen printed on the both sides of yttrium-stabilized zirconia (YSZ) pellet to fabricate the symmetrical half cells. Electrochemical impedance spectroscopy (EIS) showed that the polarization resistance was decreased when it was compared to conventional Ni-GDC anode and this effect became greater at lower temperature. Ex situ microstructural analysis using scanning electron microscopy after the reductive annealing exhibited the exsolution of Ni nanoparticles on the fluorite phases. The influence of Ni contents in GNDC on polarization characteristics of anodes were examined by EIS under H2/H2O atmosphere. Finally, the addition of optimized GNDC into the anode functional layer (AFL) dramatically enhanced cell performance of anode-supported coin cells.

  • PDF

LSGM계 음극지지형 고체산화물 연료전지에 적용된 LDC 완충층의 효과 (Effect of the LDC Buffer Layer in LSGM-based Anode-supported SOFCs)

  • 송은화;정태주;김혜령;손지원;김병국;이종호;이해원
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.710-714
    • /
    • 2007
  • LSGM$(La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}})$ is the very promising electrolyte material for lower-temperature operation of SOFCs, especially when realized in anode-supported cells. But it is notorious for reacting with other cell components and resulting in the highly resistive reaction phases detrimental to cell performance. LDC$(La_{0.4}Ce_{0.6}O_{1.8})$, which is known to keep the interfacial stability between LSGM electrolyte and anode, was adopted in the anode-supported cell, and its effect on the interfacial reactivity and electrochemical performance of the cell was investigated. No severe interfacial reaction and corresponding resistive secondary phase was found in the cell with LDC buffer layer, and this is due to its ability to sustain the La chemical potential in LSGM. The cell exhibited the open circuit voltage of 0.64V, the maximum power density of 223 $mW/cm^2$, and the ohmic resistance of $0.17{\Omega}cm^2$ at $700^{\circ}C$. These values were much improved compared with those from the cell without any buffer layer, which implies that formation of the resistive reaction phases in LSGM and then deterioration of the cell performance is resulted mainly from the La diffusion from LSGM electrolyte to anode.

마이크로 원통형 SOFC 특성평가: 집전방식에 따른 단위전지의 전기화학적 특성 (Evaluation of Micro-Tubular SOFC: Cell Performance with respect to Current Collecting Method)

  • 김환;이종원;이승복;임탁형;박석주;송락현;신동열
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.43-48
    • /
    • 2012
  • This paper presents the characterization of micro-tubular SOFCs using three different anode current collecting methods of inlet current collection (IC), both current collection (BC) and total current collection (TC). The maximum power densities of SOFCs at $750^{\circ}C$ using IC, BC and TC were 56 mW/$cm^2$ (0.43 V, 0.13 A/$cm^2$), 236 mW/$cm^2$ (0.43 V, 0.55 A/$cm^2$) and 261 mW/$cm^2$ (0.43 V, 0.61 A/$cm^2$) respectively. It was confirmed by impedance spectroscopy that both the polarization resistance and the ohmic resistance were dramatically increased at SOFC with IC.

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

지르코니아 전해질을 이용한 단실형 고체산화물 연료전지의 전기화학 특성 (The Electrochemical Property of the Single-Chamber Solid Oxide Fuel Cell Based on a Zirconia Electrolyte)

  • 박희정;주종훈;양재교;진연호;이규형
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.510-515
    • /
    • 2016
  • Single-chamber solid oxide fuel cells (SC-SOFCs) consist of only one gas chamber, in which both the anode and the cathode are exposed to the same fuel-oxidant mixture. Thus, this configuration shows good thermal and mechanical resistance and allows rapid start-up and -down. In this study, the unit cell consisting of $La_{0.8}Sr_{0.2}MnO_3$ (cathode) / $Zr_{0.84}Y_{0.16}O_{2-x}$ (electrolyte) / $Ni-Zr_{0.84}Y_{0.16}O_{2-x}$ (anode) was fabricated and its electrochemical property was investigated as a function of temperature and the volume ratio of fuel and oxidant for SC-SOFCs. Impedance spectra were also investigated in order to figure out the electrical characteristics of the cell. As a result, the cell performance was governed by the polarization resistances of the electrodes. The cell exhibited an acceptable cell-performance of $86mW/cm^2$ at $800^{\circ}C$ and stable performance for 3 hs under 0.7 V.

LSGM계 전해질 지지형 고체산화물 연료전지의 특성평가 (Characterization of the LSGM-Based Electrolyte-Supported SOFCs)

  • 송은화;김광년;정태주;손지원;김주선;이해원;김병국;이종호
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.270-276
    • /
    • 2006
  • LSGM(($La_xSr_{1-x})(Ga_yMg_{1-y})O_3$) electrolyte is known to show very serious interfacial reaction with other unit cell components, especially with an anode. Such an interfacial reaction induced the phase instability of constituent component and deterioration of the unit cell performance, which become the most challenging issues in LSGM-based SOFCs. In this study, we fabricated LSGM($La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_x$) electrolyte supported-type cell in order to avoid such interfacial problem by lowering the heat-treatment temperature of the electrode fabrication. According to the microstructural and phase analysis, there was no serious interfacial reaction at both electrolyte/anode and electrolyte/cathode interfaces. Moreover, from the electrochemical characterization of the unit cell performance, there was no distinct deterioration of the open cell voltage as well as an internal cell resistance. These results demonstrate the most critical point to be concerned in LSGM-based SOFC is either to find a proper electrode material which will not give any interfacial reaction with LSGM electrolyte or to properly adjust the processing variables for unit cell fabrication, to reduce the interfacial reaction.