DOI QR코드

DOI QR Code

The Electrochemical Property of the Single-Chamber Solid Oxide Fuel Cell Based on a Zirconia Electrolyte

지르코니아 전해질을 이용한 단실형 고체산화물 연료전지의 전기화학 특성

  • Park, Hee Jung (Department of Advanced Materials Engineering, Daejeon University) ;
  • Joo, Jong Hoon (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Yang, Jae-Kyo (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Jin, Yun Ho (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Lee, Kyu Hyoung (Department of Nano Applied Engineering, Kangwon National University)
  • 박희정 (대전대학교 신소재공학과) ;
  • 주종훈 (충북대학교 신소재공학과) ;
  • 양재교 (고등기술연구원 신소재공정센터) ;
  • 진연호 (고등기술연구원 신소재공정센터) ;
  • 이규형 (강원대학교 나노응용공학과)
  • Received : 2016.03.19
  • Accepted : 2016.07.18
  • Published : 2016.08.01

Abstract

Single-chamber solid oxide fuel cells (SC-SOFCs) consist of only one gas chamber, in which both the anode and the cathode are exposed to the same fuel-oxidant mixture. Thus, this configuration shows good thermal and mechanical resistance and allows rapid start-up and -down. In this study, the unit cell consisting of $La_{0.8}Sr_{0.2}MnO_3$ (cathode) / $Zr_{0.84}Y_{0.16}O_{2-x}$ (electrolyte) / $Ni-Zr_{0.84}Y_{0.16}O_{2-x}$ (anode) was fabricated and its electrochemical property was investigated as a function of temperature and the volume ratio of fuel and oxidant for SC-SOFCs. Impedance spectra were also investigated in order to figure out the electrical characteristics of the cell. As a result, the cell performance was governed by the polarization resistances of the electrodes. The cell exhibited an acceptable cell-performance of $86mW/cm^2$ at $800^{\circ}C$ and stable performance for 3 hs under 0.7 V.

Keywords

References

  1. H. J. Park, C. Kwak, J. S. Kim, and S. J. Ahn, J. Power Sources, 213, 31 (2012). [DOI: http://dx.doirg/10.1016/j.jpowsour.2012.03.093]
  2. H. J. Park and J. Y. Park, Solid State Ionics, 244, 30 (2013). [DOI: http://dx.doirg/10.1016/j.ssi.2013.04.026]
  3. A. B. Sambouli and E. Traversa, Renew. Sust. Energy Rev., 6, 433 (2002). [DOI: http://dx.doirg/10.1016/S1364-0321(02)00014-X]
  4. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, 1 (1995).
  5. S. J. Ahn, Y. B. Kim, J. H. Moon, J. H. Lee, and J. S. Kim, J. Korean Ceram. Soc., 43, 798 (2006). [DOI: http://dx.doirg/10.4191/KCERS.2006.43.12.798]
  6. T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, and M. Sano, Science, 288, 2031 (2000). [DOI: http://dx.doirg/10.1126/science.288.5473.2031]
  7. Z. Shao and S. M. Haile, Nature, 431, 170 (2004). [DOI: http://dx.doirg/10.1038/nature02863]
  8. H. J. Park and G. M. Choi, Solid State Ionics, 178, 1746 (2008). [DOI: http://dx.doirg/10.1016/j.ssi.2007.12.003]
  9. D. W. Jung, C. Kwak, H. J. Park, J. S. Kim, S. J. Ahn, D. H. Yeon, S. Seo, K. S. Moon, S. M. Lee, Scripta Materialia, 113, 59 (2016). [DOI: http://dx.doirg/10.1016/j.scriptamat.2015.09.042]
  10. M. Yano, A. Tomita, M. Sano, and T. Hibino, Solid State Ionics, 177, 3351 (2007). [DOI: http://dx.doirg/10.1016/j.ssi.2006.10.014]
  11. Z. Shao, C. Zhang, W. Wang, C. Su, W. Zhou, Z. Zhu, H. J. Park, and C. Kwak, Angewandte Chemie Int., 50, 1792 (2011). [DOI: http://dx.doirg/10.1002/anie.201006855
  12. N. Akhtar, S. P. Decent, D. Loghin, and K. Kendall, J. Power Sources, 193, 39 (2009). [DOI: http://dx.doirg/10.1016/j.jpowsour.2009.01.032]
  13. L. Zhu, L. Zhang, and A. V. Virkar, J. Power Sources, 291, 138 (2015). [DOI: http://dx.doirg/10.1016/j.jpowsour.2015.04.155]
  14. D. Chen, C. Huang, R. Ran, H. J. Park, C. Kwak, Z. Shao, Electrochemistry Communications, 13, 197 (2011) [DOI: http://dx.doirg/10.1016/j.elecom.2010.12.012]
  15. H. J. Park, Z. Shao, W. Wang, and K. S. Moon, Fuel Cells, 11, 654 (2011). [DOI: http://dx.doirg/10.1002/fuce.201100026]
  16. F. Dong, D. Chen, R. Ran, H. J. Park, C. Kwak, and Z. Shao, Int. J. Hydrogen Energy, 37, 4377 (2012). [DOI: http://dx.doirg/10.1016/j.ijhydene.2011.11.150]
  17. R. Moriche, D. M. Lopez, F. J. Gotor, and M. J. Sayagues, J. Power Sources, 252, 43 (2014). [DOI: http://dx.doirg/10.1016/j.jpowsour.2013.11.093]