본 연구는 사회네트워크분석(Social Network Analysis: SNA)방법을 활용하여 최근 6년간(2010~2015년)의 국내 및 해외 영재교육의 연구동향을 분석하는 데 목적을 두었다. 연구대상은 영재교육 관련 국내 KCI등재지인 '영재교육연구'(한국영재학회)와 '영재와 영재교육'(한국영재교육학회)에 게재된 논문 457편과 해외 SSCI학술지 'The Gifted Child Quarterly,' 'Journal for the Education of the Gifted,' 'High Ability Studies'에 게재된 논문 347편으로 선정하였으며, 각 논문의 영문 키워드를 추출한 후 SNA방법으로 키워드 네트워크와 연결중심성 분석을 실시하였다. 연구결과, 국내외 공통적으로 academically gifted, science gifted, gifted를 중심으로 achievement, identification, intelligence의 키워드 빈도가 가장 높게 나타났다. 따라서 영재를 대상으로 성취, 판별, 지능에 관련된 연구들이 가장 많이 이루어진 것으로 나타났다. 이외에도 cognitive, motivation, self-concept이 공통적인 관심 주제로 나타났다. 한편 국내에서는 creativity, gifted education, gifted education teacher를, 해외에서는 foreign countries, student attitudes를 키워드로 한 연구가 주를 이루었다. 국내 영재교육 연구에서는 해외와 달리 외국사례, 학생태도, 성별차이 관련 키워드 빈도가 거의 나타나지 않았다. 결론적으로 국내 영재교육 연구는 보다 다양한 관점에서 연구가 이루어져야 하는 것으로 해석되었다.
세월호 침몰사고, 판교 환풍구 붕괴사고 등 재난은 점차 복합적이고 대형화되고 있다. 따라서 이러한 재난에 신속히 대응하기 위한 기관들의 협업 또한 중요해지고 있다. 다수기관 간 협업과정에서는 다양한 용어를 바탕으로 의사소통이 이루어진다. 의사소통은 '용어'를 기반으로 하므로 '용어'에 대한 중요성 또한 간과할 수 없다. 따라서 본 연구에서는 재난현장에서 사용하는 용어를 선정하여 텍스트 마이닝 및 소셜 네트워크 분석(SNA: Social Network Analysis)을 이용해 어떤 용어가 대응과정에 있어 핵심적인 용어인지를 파악해보았다. 텍스트 마이닝의 TDM을 이용하여 역문헌 빈도수를 산출해 용어와 문서 간의 관계를 알아보고, SNA를 통해 노드(용어)와 노드 사이의 관계를 파악하였다. 용어분석의 결과 표현은 용어 간의 유기적인 관계를 시각화할 수 있는 마인드맵(Mind Map)을 이용하였다. 용어는 미국의 NIMS, EMR, 그리고 우리나라의 재난 및 안전관리 기본법을 토대로 온톨로지 개념에 따라 계층적(Class, Object, Instance)으로 분류하였으며. 신문기사와 사설, 정책보고서 등의 정부 간행물에서 선정하였다. 이러한 재난대응 핵심용어의 파악은 재난현장에서 사용하는 용어를 표준화하기 위한 기초자료로 활용할 수 있으며, 온톨로지 개념에 따라 용어들을 계층적으로 분류하였기 때문에 재난 대응에 대한 다양한 자료들을 축적하고 검색하는데 용어의 분류체계를 활용할 수 있다. 이 밖에 사고대응 시나리오 작성 시에도 핵심용어를 활용할 수 있을 것으로 판단된다.
최근 AI 스피커 시장의 규모가 급속도 커지면서 AI 스피커의 다양한 활용 가능성이 크게 주목받고 있다. 소비자들이 다양한 채널을 통해 제품을 사용한 경험을 표현하고 공유하는 환경을 만들어 졌고, 그로 인하여 소비자가 제품을 이용한 경험에 대한 다양하고 솔직한 생각을 남긴 리뷰들의 양이 방대해졌는데, 이러한 리뷰데이터는 소비자의 생각을 분석하는 데에 매우 유용하다고 할 수 있다. 본 연구에서는 이 리뷰데이터를 활용하여 AI 스피커 지속적인 사용에 영향을 미치는 요인에 대하여 분석하고자 하였다. 무엇보다 선행연구를 통하여 도출된 AI 사용의도에 영향을 미치는 7가지 요인들이 실제로 소비자들이 남기는 리뷰에서도 나타나는 요인인지를 확인하고자 하였다. 이를 위해, Amazon.com의 아마존 에코 제품에 대한 고객 리뷰데이터를 기반으로 하여 텍스트마이닝과 사회관계망 분석을 활용하여 분석하였다. 리뷰데이터를 긍정리뷰와 부정리뷰로 분류하고 전처리하여 도출된 단어들 간 연결성을 중심으로 AI 스피커의 지속적인 사용에 영향을 미치는 요인을 분류하고자 연결 중심성 분석을 하였으며, 이를 통해 연결성의 위치가 비슷한 단어들 간 분류를 하기 위하여 CONCOR 분석을 하였다. 긍정 리뷰 연구 결과, 소비자들은 AI 스피커 지속적 사용에 영향을 미치는 요인으로 의인화와 친밀성을 가장 중요하게 보았다. 이 두 요인들은 다른 요인들과도 강한 연결 관계를 보여주었고, 선행연구에서 도출된 요인 외에 연결성도 중요한 요인임을 도출하였다. 또한 추가적으로 부정적인 리뷰 분석 결과, 인식오류와 호환성이 AI 스피커 사용에 있어서 소비자들에게 부정적인 영향을 주는 주요 요인들로 도출되었다. 이러한 연구 결과를 토대로 본 연구에서는 소비자들이 아마존 에코 제품을 지속적으로 사용하게 하는 구체적인 방법에 대하여 제시하고자 한다.
협업필터링은 다양한 분야에서 널리 활용되고 있지만 협업필터링의 추천 성능은 적용하는 기업의 비즈니스 형태나 발생하는 거래 데이터의 특성에 따라 다르게 나타나고 있다. 기업에서 협업필터링 추천시스템을 구축하려면 상당한 시간과 비용이 소요되기 때문에 구축된 추천시스템의 성과가 높지 않다면 기업 자원의 낭비를 초래할 뿐만 아니라 부정확한 추천서비스를 받는 고객들의 불만을 살 수 있다. 따라서 추천시스템 도입을 검토할 때 기업이 갖고 있는 데이터의 특성을 파악하고 이를 통해 추천시스템을 도입하는 것이 타당한지 사전에 예측할 수 있다면 불필요한 도입으로 인한 경제적 손실과 고객 만족도 저하를 막을 수 있을 것이다. 기존 연구에서는 협업필터링 추천 성과에 희박성, 우연성, 커버리지 등이 영향을 미칠 수 있다고 설명하고 있지만 이러한 요인들이 어떻게 얼마나 추천 성과에 영향을 미치는지, 요인들 간에 어떠한 상관관계가 있는지는 현재까지 구체적으로 밝혀진 바가 없다. 본 연구에서는 구매 트랜잭션으로부터 생성된 소셜네트워크로부터 밀도, 군집화계수, 집중도 등의 구조적 지표를 측정한 후 이들이 추천성과에 어떻게 영향을 미치는지 통계적 분석을 통해 실증적으로 규명한다. 이를 통해 협업필터링 추천시스템에 대한 도입 여부를 결정하고자 할 때 유용하게 사용될 수 있는 지침을 제공하고자 한다.
본 연구에서는 서비스 혁신을 위한 외부 자원으로 트위터(Twitter)를 활용하고자 하였다. 이를 위해 2016년 5월, S사, X사와 관련 있는 데이터를 각각 4,766건, 15,543건 씩 실시간 추출하고 분석을 실시하였다. 정서 분석(sentiment analysis, SA)을 통하여 두 기업에 대한 감성적 분위기를 파악할 수 있었고, 계량서지학적 분석(bibliometric analysis, BA)을 이용하여 주제어 간의 수직적 관계를 파악할 수 있었다. 추가적으로 사회적 연결망 분석(social network analysis, SNA)을 통하여 주제어 간의 수평적 관계 또한 확인할 수 있었다. 본 연구를 통해 혁신 주제의 탐색 시 사회 연결망 서비스가 외부 자원으로서 충분한 활용 가치가 있음을 확인하였다.
Purpose This study intended to introduce new approaches to identify the intellectual structure of supply chain management(SCM) researches, which combines author co-citation analysis(ACA) and social network analysis(SNA). Design/methodology/approach We searched RISS(www.riss.kr) and NDSL(www.ndsl.or.kr) database and collected 292 academic papers on supply chain management between 2001 and 2011. Among 9,637 references of these papers, we analyzed 1,848 references that were published by domestic authors. We produced a correlation matrix of 32 author co-citation matrix and conducted multi-variate statistical analysis such as factor analysis. We also performed social network analysis to identify the main researchers in SCM. Findings We found four main sub-areas of supply chain management research: SCM adoption factors, logistics, SCM performance, and SCM structure. We could present the authors who played important roles within the network by using SNA indicators. The finding of this research also suggests more collaborations among domestic researchers are required to overcome the low co-citation rates among domestic authors.
과거와 달리 물류를 공간적, 서비스 영역의 확장에 따라 네트워크 관점으로 해석해야하는 노력이 필요하다. 또한 다양한 환경의 변화로 물류 네트워크 역시 급변하고 있다. 따라서 본 연구는 사회네트워크 분석을 이용하여 해상 수출입화물의 구조와 국내 항만의 중심성의 변화 추이를 분석하는데 목적을 두었다. 2005~2020년 기간에 5년 간격의 국내 해상 수출입화물의 전체 교역데이터를 사용하여, 우리나라 해상 수출입화물의 네트워크 구조의 변화를 알아보았으며, 국내 항만의 중심성에 영향을 끼치는 주요 요인을 알 수 있었다. 분석결과로는 연결 중심성은 울산항이 가장 높으며, 내향 근접 중심성은 부산, 인천항, 외향 근접 중심성은 부산, 울산항 순으로 분석되었다. 중개자 역할의 항만이라고 볼 수 있는 매개 중심성이 가장 높은 항만은 부산, 울산항 순으로 나타났다. 본 연구는 항만의 중심성 지표의 변화와 해상화물 네트워크 파악을 토대로 20년간의 국내 수출입화물 교역에 관련한 일련의 패턴을 예측하고 리스크를 대비하는 참고자료로 활용될 수 있을 것이다.
본 연구는 2013년부터 2019년까지 최근 7년간 가장 안정적인 관객동원력이 검증된 127인의 유력 제작자와 감독, 배우를 선별하고, 이들 간의 네트워크를 사회연결망 분석(SNA)을 통해 조망하였다. 또한 1998년부터 2012년까지에 흥행작 대상으로 진행된 선행 연구 결과와의 비교를 통해 변화 추이에 대해서도 설명하였다. 최근 7년간 최상위 관객동원력을 보여준 제작자는 강혜정, 장원석, 이유진, 한재덕이었고, 감독으로는 봉준호, 김용화, 류승완이 선정되었다. 배우의 경우 송강호, 하정우, 황정민이 안정적인 관객동원력을 확인받았다. 한편 127인의 유력 영화인들이 형성한 관계망을 근접 중심성, 연결 중심성, 위세 중심성, 매개 중심성을 통해 분석한 결과, 제작자로는 한재덕, 장원석, 배우로는 조진웅, 마동석, 황정민을 주축으로 한 강력한 소그룹 네트워크가 발견되었다. A급 스타 배우가 상대적으로 매우 부족한 국내 영화 제작 현실을 고려하면 이러한 편향된 네트워크로 인한 긍정적인 측면 못지않게 다양성 훼손 등의 부작용도 있을 수 있기에 경계가 필요하다. 본 연구는 그 동안의 국내 영화 흥행 요인 연구에서 논의된 적이 없는 제작자의 포지션을 연결망에 포함하여 분석했으며, 흥행작 도출에 있어 단순히 동원 관객 수에 의존하지 않고 실질적인 손익분기점 도달 여부를 확인함으로써 정확한 흥행작과 유력 영화인을 선정했다는 데에서 의미를 지닌다. 그러나 관계망에서 매니지먼트사의 위치와 역할을 제시하지 않았다는 점에서 한계를 남겼기에 이에 대한 후속 논의가 필요하다.
최근 온라인 소셜 네트워크 서비스(SNS)의 사용자가 크게 늘어나고 있으며 다양한 분야에서 SNS의 사용자 관계 구조 및 메시지를 분석하기 위한 연구를 진행하고 있다. 그러나 대부분의 소셜 네트워크 분석 방법들은 노드 사이의 최단 거리를 기초로 하고 있으므로 계산 시간이 오래 걸린다. 이는 점차 대형화 되어가는 SNS의 데이터를 여러 분야에서 활용하는데 걸림돌이 되고 있다. 이에 따라 본 논문에서는 SNS의 사용자 그래프에서 사용자간 최단거리를 빠르게 찾기 위한 휴리스틱 기반의 최단 경로 탐색 방법을 제안한다. 제안하는 방법은 1) 트리로 표현된 소셜 네트워크에서 시작 노드와 목표 노드를 설정한다. 그리고 2) 만약 목표 노드가 경사 트리의 단말에 있다면 경사 트리가 시작하는 노드를 임시 골 노드로 설정한다. 마지막으로 3) 연결의 차수를 평가값으로 하는 휴리스틱 기반 최단거리 탐색을 수행한다. 이렇게 최단거리를 탐색한 후 매개 중심성 분석(Betweenness Centrality) 및 근접 중심성(Closeness Centrality)를 계산한다. 제안하는 방법을 사용하면 소셜 네트워크 분석에서 가장 많은 시간이 필요한 최단거리 탐색을 빠르게 수행할 수 있으므로 소셜 네트워크 분석의 효율성을 기대할 수 있다. 본 논문에서 제안하는 방법을 검증하기 위하여 약 16만 명으로 구성된 SNS에서의 실제 데이터를 이용하여 매개 중심성 분석과 근접 중심성 분석을 수행하였다. 실험 결과, 제안하는 방법은 전통적 방식에 비하여 매개 중심성, 근접 중심성의 계산 시간이 각각 6.8배, 1.8배 더 빠른 결과를 보였다. 본 논문에서 제안한 방법은 소셜 네트워크 분석의 시간을 향상시켜 여러 분야에서 사회 현상 및 동향을 분석하는데 유용하게 활용될 수 있다.
The purpose of this study is to analyze research activities related to Antarctic science through a bibliographic study and to understand and evaluate the implications. This study is based on 78,445 articles which were retrieved from the Science Citation Index(SCI) database during the period 1998-2015. Through a quantitative analysis and a Social Network Analysis, we made several findings and drew out the implications. First, many countries, in general, have increased multi-national research cooperation in order to enhance research productivity. However, Korea's cooperative research activity is below the average level. Second, considering the 4 centrality indexes, which are derived from the SNA, Korea had a lower score in terms of centrality indexes. Based on these findings, Korea should formulate a more dynamic or proactive strategy in order to enhance its participation in international research cooperation efforts. Korea, the 10th country to build two or more research bases in Antarctica, should make greater efforts to bring the appropriate level of the phase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.