• Title/Summary/Keyword: SN Ratio

Search Result 474, Processing Time 0.026 seconds

Optimization of an Automotive Disc Brake Cross-section with Least Thermal Deformation by Taguchi Method (최소 열변형을 위한 자동차 디스크 브레이크 단면형상의 다구찌기법 기반 최적설계)

  • Kim, Cheol;Ha, Tae-jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Optimum cross-sectional shape of an automotive disc brake was developed based on FEM thermal analyses and the Taguchi method. Frictional heat flux and convection heat transfer coefficients were first calculated using equations and applied to the disc to calculate accurate temperature distribution and thermal deformations under realistic braking conditions. Maximum stress was generated in an area with highest temperature under pads and near the hat of ventilated disc and vanes. The SN ratio from Taguchi method and MINITAB was applied to obtain the optimum cross-sectional design of a disc brake on the basis of thermal deformations. The optimum cross-section of a disc can reduce thermal deformation by 15.2 % compared to the initial design.

Optimum Design of Linear Motor by Using Taguchi Method (다구찌 기법을 이용한 선형 모터의 최적 설계)

  • Seol, Jin-Soo;Lee, Woo-Young;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.192-195
    • /
    • 2005
  • Nanometer operating linear motor is difficult to control the nano-positioning because of the vibration between structures changing of mechanical friction force happened by properties of the vibration and heat caused by operating of a mover. Therefore, it is required to analysis the vibration and heat about a mover. In this paper, we will analyze the property of vibration through analyzing by using FEM a mover of linear motor developed in the non-load situation and suggest the direction of optimal design about a mover by using method of DOE, also try to find the solution to operate the linear motor stabilized through the reducing weight of mover considering the vibration.

  • PDF

Application of Finite Element Method and Taguchi Method to Reduce Floor Impact Vibration in Apartment Buildings (공동주택의 바닥충격진동 저감을 위한 유한요소법 및 다구찌법의 활용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.385-388
    • /
    • 2005
  • Finite element method and Taguchi method were used to reduce the floor impact vibration of the reinforced concrete slab in the apartment buildings. At first, experimental results show that sound peak components to influence the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab, and there is a high linear relation between floor impact vibration and sound. The tables of orthogonal arrays were used for finite element analysis with 5 factors related to slab shape parameters and its results were analyzed by statistical method. The most effective factor to reduce the floor impact vibration was the length of living/kitchen room and the floor impact vibration was predicted by 30% reduction in the acceleration peak by the optimal design values of the factors.

  • PDF

A Study of Bond Strength of Nickel-Chromium Alloys with Porcelain in Ceramometal System (상이(霜異)한 Ceramometal System에 있어서 Nickel-Chromium합금과 도재(陶材)와의 결합강도(結合强度)에 관(關)한 비교실험연구(比較實驗硏究))

  • Kim, Chee-Young
    • Journal of Technologic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 1985
  • In oder to compare and measure bond strength of ceramometal system with use of ceramco porcelain powder including SnO2 and uni metal, Rexillium III, Vera Bond as non precious alloys manufactured for porecelain-metal restorations. Total 24 test sample were constructed. All Test sample were measured with a Mitutoyo micrometer graduated to 0.01mm. It is as follows measured of thickness 3.3mm(metal : 1.1mm, porcelain: 2.2mm), width 12mm, length 30mm(porcelain 12mm x 12mm), Compared maximum bending stress test. The results obtained were as follows: 1. Bond strength of each metal with ceramco porcelain powder showed statistical significance.(P<0.05) 2. Vera Bond and uni metal, uni metal and Rexillium III revealed no statistical Significance.(P>0.05) Vera Bond and Rexillium III showed statistical significance.(P<0.05) 3. The order of maximum bending stress was Rexillium III, uni metal, vera Bond. The order of bond strength ratio making bending stress was Vera bond, uni metal, Rexillium III.

  • PDF

A Study on Dynamic Parameter Design Procedure Considering the Signal Factor and the Quality Characteristics with Continuous Variable (신호인자와 특성치가 연속형 변수인 경우를 고려한 동적파라미터 설계 절차에 관한 연구)

  • 배홍석;이만웅;송서일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.243-254
    • /
    • 1996
  • In this study, a model and an analysis method for parameter design is presented a linear relation between the input signal and the ideal value of a performance characteristic. Furthermore, There presented a new performance measure, expected quality loss after adjustment, which is proved to be equivalent to Taguchi's SN ratio approximately. On the basis of this, a two-step optimization procedure is proposed for parameter design considering the signal factor and the quality characteristics with continuous variable. Proposed procedure and Taguchi two-stage procedure are compared.

  • PDF

Alginate Nanohydrogels Prepared by Emulsification-Diffusion Method

  • Lee, So-Min;Yoo, Eun-Soo;Ghim, Han-Do;Lee, Su-Jeong
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.168-173
    • /
    • 2009
  • This study reports the preparation and characterization of nanohydrogels by using sodium alginate as a model material. Alginate nanohydrogels (ANH) were prepared by emulsification-diffusion method in a w/o system with 1,2-diacyl-sn-glycero- 3-phosphocholin as the lipophilic surfactant. The effects of the alginate to surfactant ratio and the remaining water contents on the mean particle size and swellability of ANHs were investigated in terms of the concentration, agitation speed, and agitation time. The feasibility of using nanohydrogels and their controllability were proved by the water the absorbency of ANHs during a 7-day evaluation by dynamic light scattering. In this work, the mean particle sizes of ANHs could be controlled from 49.2 nm (measured in ethanol phase) to $1.9{\mu}m$ (measured in water phase, after 7 days of water absorption).

Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water (화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정)

  • Ryoo, Kun-kul;Jung, Youn-won;Choi, In-sik;Kim, Hyung-won;Choi, Byung-sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.34-42
    • /
    • 2021
  • Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Process Optimization for Reduction of Waste Acids of Electropolishing Solution using Round Bus Bar (구형 부스바를 이용한 전해연마액의 폐산 폐기물 감소를 위한 공정 최적화)

  • Kim, Soo Han;Cho, Jaehoon;Park, Chulhwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.722-727
    • /
    • 2016
  • In this study, we attempted to reduce the generation of waste acids in the electropolishing process by improving the current efficiency. The optimum conditions of the electropolishing process when using the round bus bar were determined by the Taguchi method. The current density, polishing time, electrolyte temperature and flow rate were selected as the control factors for the current efficiency in the electropolishing process. An orthogonal array was created by considering three levels for each factor and experiments were carried out. The larger-the-better SN ratios were calculated by the Taguchi method. The current density was the most important factor affecting the current efficiency and the polishing time was the least important one. The optimum conditions to minimize the generation of waste acids were a current density of $45A/dm^2$, polishing time of 4 min, electrolyte temperature of $65^{\circ}C$ and flow rate of 7 L/min. The results of the ANOVA confirmed that the effects of the current density, electrolyte temperature and flow rate are significant at the 95% confidence level. The increase in the contact area and contact force afforded by using the round bus bar improved the current efficiency which, in turn, reduced the amount of waste acids generated. Further research is planned to investigate the effect of the type of bus bar on the current efficiency.

Cu2ZnSn(S,Se)4 Thin Film Solar Cells Fabricated by Sulfurization of Stacked Precursors Prepared Using Sputtering Process

  • Gang, Myeng Gil;Shin, Seung Wook;Lee, Jeong Yong;Kim, Jin Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.97-97
    • /
    • 2013
  • Recently, Cu2ZnSn(S,Se)4 (CZTSS), which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTSS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104 cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTSS based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. I will briefly overview the recent technological development of CZTSS thin film solar cells and then introduce our research results mainly related to sputter based process. CZTSS thin film solar cells are prepared by sulfurization of stacked both metallic and sulfide precursors. Sulfurization process was performed in both furnace annealing system and rapid thermal processing system using S powder as well as 5% diluted H2S gas source at various annealing temperatures ranging from $520^{\circ}C$ to $580^{\circ}C$. Structural, optical, microstructural, and electrical properties of absorber layers were characterized using XRD, SEM, TEM, UV-Vis spectroscopy, Hall-measurement, TRPL, etc. The effects of processing parameters, such as composition ratio, sulfurization pressure, and sulfurization temperature on the properties of CZTSS absorber layers will be discussed in detail. CZTSS thin film solar cell fabricated using metallic precursors shows maximum cell efficiency of 6.9% with Jsc of 25.2 mA/cm2, Voc of 469 mV, and fill factor of 59.1% and CZTS thin film solar cell using sulfide precursors shows that of 4.5% with Jsc of 19.8 mA/cm2, Voc of 492 mV, and fill factor of 46.2%. In addition, other research activities in our lab related to the formation of CZTS absorber layers using solution based processes such as electro-deposition, chemical solution deposition, nano-particle formation will be introduced briefly.

  • PDF

Effects of Flux Activator on Wettability and Slump of Sn-Ag-Cu Solder Paste (플럭스 활성제 종류에 따른 Sn-Ag-Cu 솔더 페이스트의 젖음성 및 슬럼프 특성 평가)

  • Kwon, Soonyong;Seo, Wonil;Ko, Yong-Ho;Lee, Hoo-Jeong;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2018
  • Effect of activators in flux on the printability and wettability of a solder paste was evaluated in this study. The activators in this study were dicarboxylic acids, which were oxalic acid (n = 0), malonic acid (n = 1), succinic acid (n = 2), glutaric acid (n = 3), adipic acid (n = 4), and pimelic acid (n = 5). When the solder pastes were observed with a SMT scope, solder with glutaric acid showed clean and shiny surface when it was melted. Slump ratio of the solder pastes was low when the carbon numbers of the dicarboxylic acid were 1-3. Spreadability was high when the carbon number was over 2. Zero cross time of wetting balance test was under 1 sec when the carbon number was over 3. When activator was oxalic acid or malonic acid, zero cross time was over 1 sec and maximum wetting force was low. Fluxes with the oxalic acid and malonic acid showed decomposition at the temperature close to melting point. Among the dicarboxylic acids, glutaric acid provided excellent slump, spreadability, and wettability.