• Title/Summary/Keyword: SMRs

Search Result 45, Processing Time 0.023 seconds

Manufacturing and Performance Test of Obsolete Valve in NPP using DED Metal 3D Printing Technology (원전 단종 밸브의 DED 방식 금속 3D프린팅 제작 및 성능시험)

  • Kyungnam Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • The 3D printing technology is one of the fourth industrial revolution technology that drives innovation in the manufacturing process, and should be applied to nuclear industry for various purposes according to the manufacturing trend change. In nuclear industry, it can be applied to manufacture obsolete items and new designed parts in advanced reactors or small modular reactors (SMRs), replacing the traditional manufacturing technologies. A gate valve body was manufactured, which was obsolete in nuclear power plant, using DED(Directed Energy Deposition) metal 3D printing technology after restoring design characteristics including 3D design drawing by reverse engineering. The 3D printed valve body was assembled with commercial parts such as seat-ring, disk, stem, and actuator for performance test. For the valve assembly, including 3D printed valve body, several tests were performed, including pressure test, end-loading test, and seismic test according to KEPIC MGG and KEPIC MFC. In the pressure test, hydraulic pressure of 391kgf/cm2 was applied to 3D printed valve body, and no leak was detected. Also the 3D printed valve assembly was performed well in end-loading and seismic tests.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Assessing the Potential of Small Modular Reactors (SMRs) in Spent Nuclear Fuel Management: A Review of the Generation IV Reactor Progress

  • Hong June Park;Sun Young Chang;Kyung Su Kim;Pascal Claude Leverd;Joo Hyun Moon;Jong-Il Yun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.571-576
    • /
    • 2023
  • The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.

Thermal-hydraulic modeling of CAREM-25 advanced small modular reactor using the porous media approach and COBRA-EN modified code

  • Saeed Zare Ganjaroodi;Maryam Fani;Ehsan Zarifi;Salaheddine Bentridi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1574-1583
    • /
    • 2024
  • Small Modular Reactors (SMRs) are compact nuclear reactors designed to generate electric power up to 300 MWe. They could be assembled in factory, and then transported to be directly installed on-stie. CAREM (Central Argentina de Elementos Modulares) is a national SMR development project, based on light water reactor technology supervised by Argentina's National Atomic Energy Commission (CNEA). It is a natural circulation-based SMR with an indirect-cycle, including specific items and parts that simplify the design and improve safety performance. In this paper, the thermal-hydraulic study of CAREM-25 advanced small modular reactor is conducted by using COBRA-EN modified code and the Porous Media Approach (PMA) for the first time. According to PMA approach, each fuel assembly is modeled and divided into a network of lumped regions. While complex geometries are defined, the thermal-hydraulic parameters such as temperature and density are calculated for coolant and fuel rods. The obtained results show that the temperature in the fuel center may reach a peak around 1280 K in the hottest fuel assembly. Finally, the comparison of results from both methods (modified COBRA-EN and PMA) presented an appropriate consistency.

Neutronic optimization of thorium-based fuel configurations for minimizing slightly used nuclear fuel and radiotoxicity in small modular reactors

  • Nur Anis Zulaikha Kamarudin;Aznan Fazli Ismail;Mohamad Hairie Rabir;Khoo Kok Siong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2641-2649
    • /
    • 2024
  • Effective management of slightly used nuclear fuel (SUNF) is crucial for both technical and public acceptance reasons. SUNF management, radiotoxicity risk, and associated financial investment and technological capabilities are major concerns in nuclear power production. Reducing the volume of SUNF can simplify its management, and one possible solution is utilizing small modular reactors (SMR) and advanced fuel designs like those with thorium. This research focuses on studying the neutronic performance and radionuclide inventory of three different thorium fuel configurations. The mass of fissile material in thorium-based fuel significantly impacts Kinf, burn-up, and neutron energy spectrum. Compared to uranium, thorium as a fuel produces far fewer transuranic elements and less long-lived fission products (LLFPs) at the end of the core cycle (EOC). However, certain fission product elements produced from thorium-based fuel exhibit higher radioactivity at the beginning of the core cycle (BOC). Physical separation of thorium and uranium in the fuel block, like seed-and-blanket units (SBU) and duplex fuel designs, generate less radioactive waste with lower radioactivity and longer cycle lengths than homogeneous or mixed thorium-uranium fuel. Furthermore, the SBU and duplex feel designs exhibit comparable neutron spectra, leading to negligible differences in SUNF production between the two.

Radiation Exposure and Cancer Mortality Among Nuclear Power Plant Workers: a Meta-analysis (원전종사자의 방사선 노출과 암사망 위험도와의 관련성에 대한 메타분석)

  • Park, Eun-Sook;Moon, Ki-Eun;Kim, Han-Na;Lee, Won-Jin;Jin, Young-Woo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • Objectives: We conducted a meta-analysis to investigate the relationship between low external doses of ionizing radiation exposure and the risk of cancer mortality among nuclear power plant workers. Methods: We searched MEDLINE using key words related to low dose and cancer risk. The selected articles were restricted to those written in English from 1990 to January 2009. We excluded those studies with no fit to the selection criteria and we included the cited references in published articles to minimize publication bias. Through this process, a total of 11 epidemiologic studies were finally included. A publication bias was tested for using Egger's test. The homogeneity test was performed before the integration of each of the standardized mortality ratios (SMRs) and the result proved that the studies were heterogeneous. Results: We found significant decreased deaths from all cancers (SMR = 0.75, 95% CI = 0.62 - 0.90), all cancers excluding leukemia, solid cancer, mouth and pharynx, esophagus, stomach, rectum, liver and gallbladder, pancreas, lung, prostate, lymphopoietic and hematopoitic cancer. The findings of this meta-analysis were similar with those of the 15 Country Collaborative Study conducted by the International Agency for Research on Cancer. A publication bias was found only for liver and gallbladder cancer (p = 0.015). Heterogeneity was observed for all cancers, all cancers excluding leukemia, solid cancer, esophagus, colon and lung cancer. Conclusions: Our findings of low mortality for stomach, rectum, liver and gallbladder cancers may explained by the health worker effect. Yet further studies are needed to clarify the low SMR of cancers, for which there is no useful screening tool, in nuclear power plant workers.

Small area estimations for disease mapping by using spatial model (질병지도 작성을 위해 공간모형을 이용한 소지역 추정)

  • An, Daeseong;Han, Junhee;Yoon, Taeho;Kim, Changhoon;Noh, Maengseok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.101-109
    • /
    • 2015
  • SMRs (standardized mortality rates) for major diseases, accidents, cancer are considered in small areas of administrative units such as Eup/Myeon/Dong from years 2005 to 2008. Due to small sample issue in small areas, the precision of directly estimated crude SMR for each area can be low. In this study, we consider the HGLM (hierarchical generalized linear model) with MRF (Markov random field) to account for the spatial correlations among the small areas. The effects of covariates for cause of mortality by Dongs in Seoul and disease maps based on the estimated SMR are presented. The results suggest how we analyze and interpret the difference in mortalities by small areas such as Dongs by revealing the spatial patterns.

Development of a thermal-hydraulic analysis code for once-through steam generators using straight tubes for SMRs (일체형 원자로용 관류식 직관형 증기발생기 열수력 해석 코드 개발)

  • Park, Youngjae;Kim, Iljin;Kang, Kyungjun;Kang, Hanok;Kim, Youngin;Kim, Hyungdae
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.91-102
    • /
    • 2015
  • A thermal-hydraulic design and performance analysis computer code for a once-through steam generator using straight tubes is developed. To benchmark the developed physical models and computer code, an once-through steam generator developed by other designer is simulated and the calculated results are compared with the design data. Also, the same steam generator is analyzed with the best-estimate thermal-hydraulic system code, MARS, for the code-to-code validation. The overall characteristics of heat transfer area, pressure and temperature distributions calculated by the developed code show general agreements with the published design data as well as the analysis results of MARS. It is demonstrated that the developed code can be utilized for diverse purposes, such as, sensitivity analyses and optimum thermal design of a once-through steam generator.

Spatial Analysis of Air Pollution and Lung Cancer Incidence and Mortality in 7 Metropolitan Cities in Korea. (7대 광역시에서 대기오염과 폐암 발생 및 사망에 대한 공간 분석)

  • Hwang, Seung-Sik;Lee, Jin-Hee;Jung, Gyu-Won;Lim, Jeong-Hun;Kwon, Ho-Jang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • Objectives : We aimed to assess the relationship between long-term exposure to air pollution and lung cancer in the Republic of Korea. Methods : Using the Annual Report of Ambient Air Quality in Korea, Annual Report of National Cancer Registration, and Annual Report on the Cause of Death Statistics, we calculated the standardized mortality ratio (SMR) and standardized incidence ratio (SIR) of lung cancer for both sexes in 74 areas from 7 Korean metropolitan cities. We performed random intercept, Poisson regression using empirical Bayes method. Results : Both SMRs and SIRs in the 7 metropolitan cities were higher in women than in men. Mean SIRs were 99.0 for males and 107.0 for females. The association between $PM_{10}$ and lung cancer risk differed according to gender. $PM_{10}$ was not associated with the risk of lung cancer in males, but both incidence and mortality of lung cancer were positively associated with $PM_{10}$ in females. The estimated percentage increases in the rate of female lung cancer mortality and incidence were 27% and 65% at the highest $PM_{10}$ category $({\geq}70\;{\mu}g/m^3)$, compared to the referent category $({\geq}50\;{\mu}g/m^3)$. Conclusions : Long-term exposure to $PM_{10}$ was significantly associated with female lung cancer incidence in 7 Korean metropolitan cities. Further study is undergoing to estimate the relative risk of $PM_{10}$ using multi-level analysis for controlling individual and regional confounders such as smoking and socioeconomic position.

Characterization of Functional Kimchi Using Bifidobacterium lactis (Bifidobacterium lactis를 이용한 기능성 김치의 특성)

  • Kim, Tae-Woon;Park, Ae-Kyung;Kim, Gum-Ran;Lee, Jung-Min;Chung, Dae-Kyun;Kim, Hae-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.924-927
    • /
    • 2003
  • This study was conducted to investigate the application of bifidobacteria on kimchi. Among several Bifidobacterium species, we selected Bifidobacterium lactis (DSM 10140), which is resistant to oxygen, acid and salt. Bifidobacterium lactis was cultured in a supplemented deMan, Rogosa and Sharpe (SMRS) medium under aerobic conditions. Its acid-tolerance and salt-tolerance were pH 3.0 and 3.5% (NaCl), respectively. The viability of Bifidobacterium lactis added to kimchi was confirmed by PCR, using specific primers on Bifidobacterium lactis. In sensory evaluation, kimchi containing Bifidobacterium lactis showed similar scores in overall acceptability with the control kimchi. Consequently, these results showed that it would be possible to prepare functional kimchi using Bifidobacterium.