• Title/Summary/Keyword: SMC molding

Search Result 43, Processing Time 0.021 seconds

Development of Phenolic SMC for The Rail (철도차량 및 지하철 불연 내장재 페놀 SMC 개발)

  • Kim Young-keun;Shin Dong-hyok;Kim Young-min;Park Joung-wuk;Min Jae-Jun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.55-58
    • /
    • 2004
  • Phenolin resin, prepared form phenol and formaldehyde, is one of the oldest thermosetting resins available. Phenolic resins are cured via condensation polymerization with evolution of water, which in molding process is a big problem. The use of phenolic resins in glass fiber composites is growing, primarily due to their low flame spread, low smoke generation and low smoke toxicity properties. SMC of phenolics has been rearched since the 1986. The technology challenge was to match resin viscosity, handling and cure with those for the polyester SMC to avoid any special processing for fabricators and end users. Phenolic SMC was chosen because of the ease of molding to the required shape with light- weight, thin wall structure and with excellent fire protection.

  • PDF

Mechanical Properties of Particle and Fiber Reinforced SMC Composites (입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구)

  • 정현조;윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF

Properties of Randomly Oriented Chopped E-glass Reinforced Unsaturated Polyester Based Resin Composite -Effect of Length/Content of E-Glass Fiber and Number of Stacking- (랜덤상태의 E-유리 단섬유 강화 불포화 폴리에스터 기반 수지 복합재료의 물성 - E-유리 단섬유의 길이와 함량 및 적층수의 영향 -)

  • Park, Jin-Myung;Park, Young-Gwang;Lee, Young-Hee;Seo, Dae-Kyung;Lee, Jang-Hun;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.165-174
    • /
    • 2015
  • To develop automobile parts, the unsaturated polyester based matrix resin(PR)/reinforcement(randomly oriented chopped E-glass fiber, GF) composites were prepared using sheet molding compound(SMC) compression molding. The effects of GF length(0.5, 1.0 1.5 and 2.0inch)/content (15, 20, 25, 30wt%) and number of ply(3, 4 and 5) on the specific gravity and mechanical properties of PR/GF composites were investigated in this study. The optimum length of GF was found to be about 1.0inch for achieving improved mechanical properties(tensile strength and initial modulus). The tensile strength and initial modulus of composites increased with increasing GF content up to 30wt%, which is favorable content range for SMC. The specific gravity, tensile strength/initial modulus, compressive strength/modulus, flexural strength/modulus and shear strength increased with increasing the number of ply up to 5, which is the maximum number of ply range for SMC. The effectiveness of ply number increased in the flexural strength > shear strength > compressive strength > tensile strength.

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (에폭시 개질 한 다관능 아크릴레이트를 포함하는 충격 저항성이 향상된 불포화폴리에스터 SMC (Sheet Molding Compound) 소재제조 및 그의 물성연구)

  • Jang, Jeong Beom;Kim, Taehee;Kim, Hye Jin;Lee, Wonjoo;Seo, Bongkuk;Kim, Yongsung;Kim, Changyoon;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.101-106
    • /
    • 2020
  • In this study, epoxy-modified acrylate was synthesized. The synthesized acrylate was added to the composition for sheet molding compound (SMC) in the range of 5 phr to 15 phr. The prepared SMC prepreg was molded at high temperature and pressure to produce a glass fiber reinforced composite. Physical properties such as tensile and impact strength of the composite were measured, respectively. Experimental data show that the composite with 5 phr of synthesized acrylate has 20% improved tensile strength and 12% improved impact strength than that of the reference sample.

Applicability on Water Treatment Structure of Anti-corrosive Sheet Molding Compound Panel (고분자수지계 패널형 방수방식재의 수처리구조물 적용성에 관한 실험적연구)

  • Seo, Hyun Jae;Park, Jin Sang;Bae, Kee Sun;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.161-163
    • /
    • 2011
  • Due to various kind of waterproof materials and methods, which is difficult to select the most appropriate to waterworks. The materials used to prevent the deterioration of the service life is short, because of the chemical erosion. So, in the 2010 Office of Waterworks Seoul Metropolitan Government has set new standards. Recently, SMC panel is a trend that is being applied to water treatment facilities. However, SMC panel has not yet implemented a performance evaluation. Therefore, this study to confirm that satisfaction for the Office of Waterworks Seoul Metropolitan Government of the performance requirements, when the applied the SMC panel to water treatment structure.

  • PDF

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

An Experimental Study on the Analysis of Behavior Characteristics of the NDB Soil Nailing System (NDB 쏘일네일링 시스템의 거동특성 평가에 관한 실험적 고찰)

  • 김홍택;정성필;박시삼;전경식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.521-528
    • /
    • 2003
  • In this study, a newly modified soil nailing technology called as the NDB(New Down and Board) soil nailing system is introduced. To improve the trafficability, workability, and economical efficiency, SMC(Sheet Molding Compound) board is adopted instead of using the concrete block facing. The SMC board has a distinct advantage of showing a fine view by directly coating with any kind of environmental photos. Composite material properties of the SMC board and cement grout are distinguished features of the NDB soil nailing system. In the present study, both laboratory tests(bending and punching failure tests) and field pull-out tests are carried out to analyze the behavior characteristics of the NDB soil nailing system, including the stress and strain distribution.

  • PDF

Numerical Study on The Injection-Compression Molding Characteristic of High Viscosity Plastic Fluids (고점도 유동장이 사출-압축 성형에 미치는 영향)

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.345-350
    • /
    • 2002
  • Recently, as the development of manufacturing technique on SMC(sheet molding compound), various numerical and experimental approaches to injection and compression molding have been investigated. Injection and compression molding, however, has so various cases with complicated boundary condition that it is difficult to analyze mold characteristics precisely. In addition, since a slight change in process variables can significantly change the resulting mold thickness, a proper design is important to compression molding process. Therefore, in this study, the effects of various parameters on compression molding process have been investigated using FEM(finite element method) to formulate the melt front advancement during the mold filling process. To verify the results of present analysis, they are compared with those of reference. The results show a strong effect of initial charge volume, injection time and pressure as a result of variations in the rectangular charge shape.

Composite applications to automobiles (섬유강화 복합재료와 자동차)

  • 이상관;김병선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.96-120
    • /
    • 1996
  • 현재 자동차용 복합재료를 생산하는데 유리한 제조방법으로는 압축성형 (Compression Molding), 액상성형(Liquid Molding), 인발성형(Pultrusion), 필라멘트 와인딩성형(Filament Winding)등이 있다. 압축성형은 현재 자동차 외장부품 성형에 널리 알려져 있는 SMC(Sheet Molding Compound)성형, 최근에 많은 연구가 되고 있는 LMPC(Low Pressure Molding Compound)성형, GMT(Glass Mat Reinforced Thermoplastics)성형 등이 있다. 액상성형은 RTM(Resin Transfer Molding)과 VARI (Vacuum Assisted Injection Molding), SRIM(Structure Reaction Injection Molding) 등이 있으며, 자동차 산업뿐만 아니라 일반 산업에서도 최근 많은 각광을 받고 있다. 그러므로 본 소고에서는 자동차용 복합재료의 제조에 널리 사용되는 성형공정에 대하여 간단히 살펴보고, 자동차 부품에 있어서의 복합재료 응용 현장과 최근 환경문제가 대두되면서 관심의 초점이 되고 있는 자동차용 복합재료 재활용 기술에 대하여 고찰하고자 한다.

  • PDF