• Title/Summary/Keyword: SLAM (Simultaneous Localization And Mapping)

Search Result 121, Processing Time 0.023 seconds

Obstacle Avoidance for Unmanned Air Vehicles Using Monocular-SLAM with Chain-Based Path Planning in GPS Denied Environments

  • Bharadwaja, Yathirajam;Vaitheeswaran, S.M;Ananda, C.M
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • Detecting obstacles and generating a suitable path to avoid obstacles in real time is a prime mission requirement for UAVs. In areas, close to buildings and people, detecting obstacles in the path and estimating its own position (egomotion) in GPS degraded/denied environments are usually addressed with vision-based Simultaneous Localization and Mapping (SLAM) techniques. This presents possibilities and challenges for the feasible path generation with constraints of vehicle dynamics in the configuration space. In this paper, a near real-time feasible path is shown to be generated in the ORB-SLAM framework using a chain-based path planning approach in a force field with dynamic constraints on path length and minimum turn radius. The chain-based path plan approach generates a set of nodes which moves in a force field that permits modifications of path rapidly in real time as the reward function changes. This is different from the usual approach of generating potentials in the entire search space around UAV, instead a set of connected waypoints in a simulated chain. The popular ORB-SLAM, suited for real time approach is used for building the map of the environment and UAV position and the UAV path is then generated continuously in the shortest time to navigate to the goal position. The principal contribution are (a) Chain-based path planning approach with built in obstacle avoidance in conjunction with ORB-SLAM for the first time, (b) Generation of path with minimum overheads and (c) Implementation in near real time.

Performance Simulation of Various Feature-Initialization Algorithms for Forward-Viewing Mono-Camera-Based SLAM (전방 모노카메라 기반 SLAM 을 위한 다양한 특징점 초기화 알고리즘의 성능 시뮬레이션)

  • Lee, Hun;Kim, Chul Hong;Lee, Tae-Jae;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.833-838
    • /
    • 2016
  • This paper presents a performance evaluation of various feature-initialization algorithms for forward-viewing mono-camera based simultaneous localization and mapping (SLAM), specifically in indoor environments. For mono-camera based SLAM, the position of feature points cannot be known from a single view; therefore, it should be estimated from a feature initialization method using multiple viewpoint measurements. The accuracy of the feature initialization method directly affects the accuracy of the SLAM system. In this study, four different feature initialization algorithms are evaluated in simulations, including linear triangulation; depth parameterized, linear triangulation; weighted nearest point triangulation; and particle filter based depth estimation algorithms. In the simulation, the virtual feature positions are estimated when the virtual robot, containing a virtual forward-viewing mono-camera, moves forward. The results show that the linear triangulation method provides the best results in terms of feature-position estimation accuracy and computational speed.

A Markerless Augmented Reality Approach for Indoor Information Visualization System (실내 정보 가시화에 의한 u-GIS 시스템을 위한 Markerless 증강현실 방법)

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.195-199
    • /
    • 2009
  • Augmented reality is a field of computer research which deals with the combination of real-world and computer-generated data, where computer graphics objects are blended into real footage in real time and it has tremendous potential in visualizing geospatial information. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or marker based approaches. Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed RF based tracking and localization. However, it does cause deployment problems of large sensors and readers. In this paper, we present a noble markerless AR approach for indoor navigation system only using a camera. We will apply this work to mobile seamless indoor/outdoor u-GIS system.

  • PDF

Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation (물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구)

  • Yeong Jun Yu;SeongHoon Kang;JuHwan Kim;SeongIn No;GiHyeon Lee;Seung Yong Lee;Chul-hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

Obstacle Detection and Safe Landing Site Selection for Delivery Drones at Delivery Destinations without Prior Information (사전 정보가 없는 배송지에서 장애물 탐지 및 배송 드론의 안전 착륙 지점 선정 기법)

  • Min Chol Seo;Sang Ik Han
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.20-26
    • /
    • 2024
  • The delivery using drones has been attracting attention because it can innovatively reduce the delivery time from the time of order to completion of delivery compared to the current delivery system, and there have been pilot projects conducted for safe drone delivery. However, the current drone delivery system has the disadvantage of limiting the operational efficiency offered by fully autonomous delivery drones in that drones mainly deliver goods to pre-set landing sites or delivery bases, and the final delivery is still made by humans. In this paper, to overcome these limitations, we propose obstacle detection and landing site selection algorithm based on a vision sensor that enables safe drone landing at the delivery location of the product orderer, and experimentally prove the possibility of station-to-door delivery. The proposed algorithm forms a 3D map of point cloud based on simultaneous localization and mapping (SLAM) technology and presents a grid segmentation technique, allowing drones to stably find a landing site even in places without prior information. We aims to verify the performance of the proposed algorithm through streaming data received from the drone.

Loop Closure in a Line-based SLAM (직선기반 SLAM에서의 루프결합)

  • Zhang, Guoxuan;Suh, Il-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.120-128
    • /
    • 2012
  • The loop closure problem is one of the most challenging issues in the vision-based simultaneous localization and mapping community. It requires the robot to recognize a previously visited place from current camera measurements. While the loop closure often relies on visual bag-of-words based on point features in the previous works, however, in this paper we propose a line-based method to solve the loop closure in the corridor environments. We used both the floor line and the anchored vanishing point as the loop closing feature, and a two-step loop closure algorithm was devised to detect a known place and perform the global pose correction. We propose an anchored vanishing point as a novel loop closure feature, as it includes position information and represents the vanishing points in bi-direction. In our system, the accumulated heading error is reduced using an observation of a previously registered anchored vanishing points firstly, and the observation of known floor lines allows for further pose correction. Experimental results show that our method is very efficient in a structured indoor environment as a suitable loop closure solution.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Development of a Self-Driving Service Robot for Monitoring Violations of Quarantine Rules (방역수칙 위반 감시를 위한 자율주행 서비스 로봇 개발)

  • Lee, In-kyu;Lee, Yun-jae;Cho, Young-jun;Kang, Jeong-seok;Lee, Don-gil;Yoo, Hong-seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.323-324
    • /
    • 2022
  • 본 논문에서는 사람의 개입 없이 실내 환경에서 마스크 미 착용자를 스스로 발견한 후 방역수칙위반 사실에 대한 경고와 함께 마스크 착용을 권고하는 인공지능 기반의 자율주행 서비스 로봇을 개발한다. 제안한 시스템에서 로봇은 동시적 위치 추적 지도 작성 기법인 SLAM(Simultaneous Localization and Mapping)기술을 이용하여 지도를 작성한 후 사용자가 제공한 웨이포인트(Waypoint)를 기반으로 자율주행한다. 또한, YOLO(You Only Look Once) 알고리즘을 이용한 실시간 객체 인식 기술을 활용하여 보행자의 마스크 착용 여부를 판단한다. 실험을 통해 사전에 작성된 지도에 지정된 웨이포인트를 따라 로봇이 자율주행하는 것을 확인하였다. 또한, 충전소로 이동할 경우, 영상 처리 기법을 활용하여 충전소에 부착된 표식에 근접하도록 이동하여 충전이 진행됨을 확인하였다.

  • PDF

Performance Comparison of the LRF and CCD Camera under Non-Visibility (Dense Aerosol) Environments (비 가시 환경에서의 LRF와 CCD 카메라의 성능비교)

  • Cho, Jai Wan;Choi, Young Soo;Jeong, Kyung Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.367-373
    • /
    • 2016
  • In this paper, range measurement performance of LRF (Laser Range Finder) module and image contrast of color CCD camera are evaluated under the aerosol (high temperature steam) environments, which are simulated severe accident conditions of the LWR (Light-Water-Reactor) nuclear power plant. Data of LRF and color CCD camera are key informations, which are needed in the implementation of SLAM (Simultaneous Localization and Mapping) function for emergency response robot system to cope with urgently accidents of the nuclear power plant.