• Title/Summary/Keyword: SLAM (Simultaneous Localization And Mapping)

Search Result 121, Processing Time 0.026 seconds

Map Building and Localization Based on Wave Algorithm and Kalman Filter

  • Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.

  • PDF

Mapless Navigation Based on DQN Considering Moving Obstacles, and Training Time Reduction Algorithm (이동 장애물을 고려한 DQN 기반의 Mapless Navigation 및 학습 시간 단축 알고리즘)

  • Yoon, Beomjin;Yoo, Seungryeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.377-383
    • /
    • 2021
  • Recently, in accordance with the 4th industrial revolution, The use of autonomous mobile robots for flexible logistics transfer is increasing in factories, the warehouses and the service areas, etc. In large factories, many manual work is required to use Simultaneous Localization and Mapping(SLAM), so the need for the improved mobile robot autonomous driving is emerging. Accordingly, in this paper, an algorithm for mapless navigation that travels in an optimal path avoiding fixed or moving obstacles is proposed. For mapless navigation, the robot is trained to avoid fixed or moving obstacles through Deep Q Network (DQN) and accuracy 90% and 93% are obtained for two types of obstacle avoidance, respectively. In addition, DQN requires a lot of learning time to meet the required performance before use. To shorten this, the target size change algorithm is proposed and confirmed the reduced learning time and performance of obstacle avoidance through simulation.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures

  • Seo, Dae-Sung;Won, Dae-Heui;Yang, Gwang-Woong;Choi, Moo-Sung;Kwon, Sang-Ju;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1797-1801
    • /
    • 2005
  • SLAM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important issues in mobile robot research. Until now expensive sensors like a laser sensor have been used for the mobile robot's localization. Currently, as the RFID reader devices like antennas and RFID tags become increasingly smaller and cheaper, the proliferation of RFID technology is advancing rapidly. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used to identify the mobile robot's location on the smart floor. We discuss a number of challenges related to this approach, such as RFID tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, because the reader just can senses whether a RFID tag is in its sensing area, the localization error occurs as much as the sensing area of the RFID reader. And, until now, there is no study to estimate the pose of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. We use the Markov localization algorithm to reduce the location(X,Y) error and the Kalman Filter algorithm to estimate the pose(q) of a mobile robot. We applied these algorithms in our experiment with our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors like odometers and RFID tags for the mobile robot's localization on the smart floor.

  • PDF

Arc/Line Segments-based SLAM by Updating Accumulated Sensor Data (누적 센서 데이터 갱신을 이용한 아크/라인 세그먼트 기반 SLAM)

  • Yan, Rui-Jun;Choi, Youn-sung;Wu, Jing;Han, Chang-soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.936-943
    • /
    • 2015
  • This paper presents arc/line segments-based Simultaneous Localization and Mapping (SLAM) by updating accumulated laser sensor data with a mobile robot moving in an unknown environment. For each scan, the sensor data in the set are stored by a small constant number of parameters that can recover the necessary information contained in the raw data of the group. The arc and line segments are then extracted according to different limit values, but based on the same parameters. If two segments, whether they are homogenous features or not, from two scans are matched successfully, the new segment is extracted from the union set with combined data information obtained by means of summing the equivalent parameters of these two sets, not combining the features directly. The covariance matrixes of the segments are also updated and calculated synchronously employing the same parameters. The experiment results obtained in an irregular indoor environment show the good performance of the proposed method.

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

Development of autonomous driving logistics transport robot (자율주행 물류 이송 로봇)

  • Lee, Jeong-woo;Kim, Dong-yeon;Lee, Sang-yun;Park, Yu-jin;Park, Yang-woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.321-322
    • /
    • 2022
  • 본 논문에서는 ROS(Robot Operating System) 기반으로 한 로봇(Robot)에 레이저 거리 센서(LiDAR)를 설치하여 SLAM(Simultaneous Localization And Mapping) 기법으로 지도 정보를 습득 및 저장하고, 이를 기반으로 맵핑된 환경과 환경 내 장애물을 회피하여 안전하고 정확하게 이동할 수 있도록 하였다. ROS는 하드웨어 추상화, 장치 드라이버, 시각화 도구, 패키지 관리 등 로봇 애플리케이션을 개발할 수 있도록 라이브러리와 도구를 제공한다. 또한 로봇 동작에 사용되는 프로세스 간 TCP-IP 통신을 통해 연동할 수 있도록 한다[1]. Ubuntu 18.04 버전의 OS에 ROS Melodic 버전을 설치해서 앱으로 선택된 목적지로 이동하는 물류 이송 로봇을 구현하였다.

  • PDF

Development of Hand-Controlled Transportation Robot (손동작으로 제어 가능한 운송 로봇 개발)

  • Lee, In-kyu;Cho, Young-jun;Kang, Jeong-seok;Lee, Yun-jae;Yoo, Hongseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.481-482
    • /
    • 2022
  • 본 논문에서는 손동작으로 제어 가능한 운송 로봇을 제안한다. 제안한 시스템에서 로봇은 MediaPipe를 이용하여 실시간으로 사람의 손동작을 인식한다. 또한, 동시적 위치 추적 지도 작성 기법인 SLAM(Simultaneous Localization and Mapping) 기술을 이용하여 로봇이 실내 공간에서 길을 찾고 자율적으로 이동할 수 있게 한다. 개발된 로봇실험을 통하여 로봇이 실시간으로 손동작을 인식하고 동작을 제어하는 것을 확인하였다. 또한, 사전에 작성된 지도를 바탕으로 실내에서 로봇이 자율주행을 하는 것을 확인하였다.

  • PDF

Real-time Construction Progress Monitoring Framework leveraging Semantic SLAM

  • Wei Yi HSU;Aritra PAL;Jacob J. LIN;Shang-Hsien HSIEH
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1073-1080
    • /
    • 2024
  • The imperative for real-time automatic construction progress monitoring (ACPM) to avert project delays is widely acknowledged in construction project management. Current ACPM methodologies, however, face a challenge as they rely on collecting data from construction sites and processing it offline for progress analysis. This delayed approach poses a risk of late identification of critical construction issues, potentially leading to rework and subsequent project delays. This research introduces a real-time construction progress monitoring framework that integrates cutting-edge semantic Simultaneous Localization and Mapping (SLAM) techniques. The innovation lies in the framework's ability to promptly identify structural components during site inspections conducted through a robotic system. Incorporating deep learning models, specifically those employing semantic segmentation, enables the system to swiftly acquire and process real-time data, identifying specific structural components and their respective locations. Furthermore, by seamlessly integrating with Building Information Modeling (BIM), the system can effectively evaluate and compare the progress status of each structural component. This holistic approach offers an efficient and practical real-time progress monitoring solution for construction projects, ensuring timely issue identification and mitigating the risk of project delays.

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

Development of Smart Mobility System for Persons with Disabilities (장애인을 위한 스마트 모빌리티 시스템 개발)

  • Yu, Yeong Jun;Park, Se Eun;An, Tae Jun;Yang, Ji Ho;Lee, Myeong-Gyu;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.