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Abstract: The imperative for real-time automatic construction progress monitoring (ACPM) to avert 

project delays is widely acknowledged in construction project management. Current ACPM 

methodologies, however, face a challenge as they rely on collecting data from construction sites and 

processing it offline for progress analysis. This delayed approach poses a risk of late identification of 

critical construction issues, potentially leading to rework and subsequent project delays. This research 

introduces a real-time construction progress monitoring framework that integrates cutting-edge 

semantic Simultaneous Localization and Mapping (SLAM) techniques. The innovation lies in the 

framework’s ability to promptly identify structural components during site inspections conducted 

through a robotic system. Incorporating deep learning models, specifically those employing semantic 

segmentation, enables the system to swiftly acquire and process real-time data, identifying specific 

structural components and their respective locations. Furthermore, by seamlessly integrating with 

Building Information Modeling (BIM), the system can effectively evaluate and compare the progress 

status of each structural component. This holistic approach offers an efficient and practical real-time 

progress monitoring solution for construction projects, ensuring timely issue identification and 

mitigating the risk of project delays. 
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1. INTRODUCTION 

In contemporary construction project management, Real-Time Automated Construction Progress 

Monitoring (ACPM) is pivotal for enhancing project efficiency and reducing the risk of delays [1][2]. 

Traditional progress monitoring methods rely on manual data collection and processing, which tends to 

delay issue identification and is labor-intensive. The advent of technologies like Semantic Simultaneous 

Localization and Mapping (Semantic SLAM) has made Real-Time ACPM feasible, addressing the 

critical limitations of manual monitoring methods, including the potential for human error and data 

processing inefficiencies [3]. The necessity for real-time data collection and processing in construction 

project management has become increasingly apparent. The delayed identification of construction issues 

inherent in traditional monitoring approaches leads to project delays and increases costs due to the need 

for rework.  

This study introduces a real-time progress monitoring framework that leverages advancements in 

Semantic SLAM technology. This framework integrates cutting-edge semantic SLAM techniques with 

automated tools, such as robotic systems, for on-site inspections, providing a practical approach to 

monitoring construction progress. Furthermore, applying deep learning models enhances the system’s 

ability to identify and classify different structural elements accurately [4]. This capability is crucial for 

maintaining the accuracy and reliability of progress monitoring [2]. Additionally, integrating with 

Building Information Models (BIM) offers more insights, such as comparing real-time identified tasks 

with 4D BIM scheduling to check for plan adherence.  

The transition towards Real-Time ACPM, emphasized by integrating Semantic SLAM and automated 

robotic inspections, represents a pivotal advancement in construction project management. This 

approach can significantly enhance project efficiency, reduce costs, and improve the overall quality of 

construction projects. Building upon this conceptual foundation, the subsequent advancements and 

empirical validations further illustrate the evolution and practical application of Real-Time ACPM. The 
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evolution of Real-Time ACPM represents a significant leap forward in construction project 

management, aiming to enhance efficiency and reduce project delays.  

Integrating semantic Simultaneous Localization and Mapping (semantic SLAM) technologies and 

advanced deep learning models has revolutionized real-time monitoring practices. Studies by Yang et 

al. [2] and Pučko et al.[3] highlight the transformative impact of these technologies in addressing the 

limitations of manual monitoring methods, highlighting the crucial role of real-time data acquisition and 

processing in improving project management outcomes. Raut et al. [5] emphasized the importance of 

effective cost and time-monitoring techniques, advocating for an integrated approach that combines 

Average Index formulas and S-curves for more accurate project management. Similarly, Liu et al. [6] 

explored the benefits of near real-time 3D reconstruction for critical monitoring tasks, demonstrating 

the potential of LDSO-based methods in enhancing the rapidity and quality of construction monitoring. 

Halder et al. [7] presented an innovative approach to real-time progress monitoring through quadruped 

robots integrated with Augmented Reality (AR), showcasing a computational framework that leverages 

cloud-based solutions for remote navigation and progress monitoring. Jiang et al. [8] introduced a semi-

automatic framework utilizing Scan-vs-BIM technology for real-time monitoring of bridge construction 

projects, highlighting the efficiency of integrating geometric information from as-built to virtual point 

clouds for more accurate monitoring. 
These studies illustrate the ongoing advancements in ACPM, emphasizing the critical role of 

technology in overcoming traditional monitoring challenges and enhancing construction project 

management. The collective findings highlight a significant shift towards leveraging cutting-edge 

technologies for real-time data acquisition, processing, and monitoring, substantially improving 

construction project management practices. 

2. REAL-TIME CONSTRUCTION MONITORING FRAMEWORK 

For Real-Time ACPM, this study introduces a lightweight monitoring framework suitable for edge 

computing devices. The framework is divided into five main modules: data preprocessing, on-site data 

collection, semantic SLAM, progress status estimation, and output with visualization, as demonstrated 

in Figure 1. 

2.1. Data Preprocessing 

In the automation realm, data preparation and preprocessing are essential for system operation, 

particularly in applications involving robotics and edge computing devices where effective data 

processing significantly influences system efficiency. Our research begins by utilizing the Revit API to 

extract specific information from 4D BIM, concentrating on necessary details such as each element’s 

geometry and anticipated schedules. By selectively extracting relevant information, we avoid the 

inefficiency of importing entire models that are filled with abundant information. The BIM model used 

for input must possess a Level of Development (LOD) of 300 or higher to ensure the model contains 

sufficient information. Subsequently, the extracted data is inputted into the Robot Operating System 

(ROS), where the coordinate system of the BIM model automatically aligns with that of the robot, as 

illustrated in Figure 2. This targeted approach to data extraction and processing reduces the 

computational load and makes integrating BIM data with robotics and edge computing applications 

more straightforward, establishing a flexible and effective foundation for preparatory work. 

2.2. Data Collection 

Automating real-time data collection in construction site environments poses a significant challenge, 

leading to increasing research focusing on the application of robots in construction. The effectiveness 

of data collection depends on the SLAM algorithms. For instance, approaches based on RGB-D and 

LiDAR have distinct advantages. RGB-D sensors are suited for detail-rich indoor environments as they 

can capture surface details and color information for more precise object identification and spatial 

positioning [9]. On the other hand, LiDAR offers high-precision distance measurement, making it 

suitable for large-scale outdoor environments with stable light conditions [10]. Each approach provides 

different advantages based on the specific needs of the construction site. This study primarily employs 

an RGB-D-based approach because it can give real-time depth and color information, making 

segmentation more effective. Additionally, selecting the right robot is crucial. While there are studies 

on deploying robotic dogs or drones on construction sites, applying Unmanned Ground Vehicles 

(UGVs) is less common. The advantages of UGVs include their lower cost and smaller size, which 
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allows them to avoid obstacles on construction sites. However, their limitation lies in less agility in 

environments with significant elevation differences. For UGVs, choosing the proper mode of mobility 

is essential; tracks are suitable for navigating rugged surfaces, while omnidirectional wheels support 

360-degree movement. These features apply to many data collection scenarios on construction sites. 

Robots significantly enhance the automation in data collection [11][12]. Figure 3 shows the robot used 

in this study for collecting data. It is equipped with an RGB-D camera and LiDAR sensors. The robot’s 

chassis utilizes omnidirectional wheels for movement within the construction site. 

 

 
Figure 1. The system overview of the proposed framework. 

 

 

 

Figure 2. The alignment of the BIM model with the robot’s coordinates. 
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Figure 3. The robot used in this study for on-site data collection. 

 

2.3. Semantic SLAM 

Semantic SLAM is a technology that combines SLAM with visual image recognition, primarily 

tackling three conceptual questions: “Where am I?” “Where are the objects around me?” and “What are 

the objects around me?”. The solutions to these questions correspond to three core technologies: 

Localization, Mapping, and Semantics. This technology effectively addresses the technical challenges 

encountered in this study, namely robot navigation and the generation of 3D semantic point clouds. 

SLAM works by iteratively estimating the position of a robot and updating the map of the environment 

simultaneously. It utilizes sensor data to identify distinctive features in the surroundings, using these as 

reference points to build and refine a map while tracking the robot’s location within it. This paper 

introduces RTAB-Map, a Graph-Based SLAM approach using an incremental appearance-based loop 

closure detector  [13], which assesses whether a new image matches a previous location. It incorporates 

a memory management strategy for efficient real-time mapping and localization in extensive 

environments. Localization and mapping assist the robot in autonomous navigation and in defining the 

spatial relationships with surrounding components, while Semantics help us understand what these 

components are. Generating 3D semantic point clouds involves fusing 2D dense semantics from deep 

learning models with 3D point clouds at each frame. At the same time, the SLAM system provides the 

robot’s position at each frame, thereby creating a 3D semantic map. Figure 4 presents the 3D points 

cloud results generated by applying semantic SLAM. It processes image input from RGB-D cameras 

and outputs 2D semantic segmentation of images. It then fuses semantic segmentation results with depth 

point clouds. Finally, the pose output by the SLAM system is utilized to determine the position of each 

semantic point cloud. Here, different structural elements can be easily identified by their semantic labels. 

 

 
Figure 4. The process of generating semantic point clouds. 

 
 

2.4. Progress Status Estimation 

As the 3D semantic map automatically gets aligned with the BIM, we use the method of occupancy 

check to estimate the progress status of the structural elements of the construction project. First, the 

bounding boxes of individual elements are extracted from BIM and expanded by a threshold value to 

accommodate minor errors. Subsequently, the total number of points within each bounding box is 

calculated. If the number of points exceeds a predetermined threshold, it indicates that the construction 
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of the components has been completed; otherwise, it signifies no progress [14]. Accordingly, elements 

are color-coded for progress visualization. Furthermore, we also analyze the number of point clouds in 

the most common segmentation class to gain advanced information on the progress status. 

3. EXPERIMENTS AND RESULTS 

The framework proposed in this study was implemented and deployed on robots and edge computing 

devices for real-world testing at construction sites. 

3.1. Case Study 

We selected a hospital building’s construction site for testing, as illustrated in Figure 5. As shown in 

the figure, we applied our method to a specific site portion. The floor area of this section was 

approximately 385 square meters, and the structural components included columns, beams, walls, and 

slabs, totaling 30 in number. 

 

Figure 5. The information from the case study. 

 

3.2. Semantic SLAM 

In our SLAM system, RTAB-Map was employed, utilizing loop closure detection to enable real-time 

and accurate large-scale mapping. Figure 6 displays the output of our SLAM system using RTAB-Map, 

illustrating a detailed 2D map and the path trajectory, along with a 3D point clouds representation. It 

showcases the system’s ability to dynamically generate a comprehensive 2D map and path in real time. 

The figure highlights the map’s completeness and the path’s clarity, demonstrating the system’s 

effectiveness in mapping environments dynamically. It visually demonstrates the system’s capacity to 

produce detailed spatial representations, crucial for understanding and navigating the mapped 

environment. 

 

Figure 6. The result of semantic SLAM. 
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For semantic segmentation, we used MobileNetV2Dilated, a model distinguished by its efficiency 

and lightweight architecture, which aligns with our requirement for real-time processing capabilities. 

Figure 7 below depicts the MobileNetV2Dilated model architecture. The model architecture builds upon 

the efficient inverted residual structure introduced in MobileNetV2. It commences with a standard 

convolutional layer with a 3x3 kernel and a stride of 2 for initial spatial reduction and feature extraction. 

This is succeeded by a sequence of inverted residual blocks, characterized by their use of depthwise 

separable convolutions that offer a balance between lightweight models and representational power. 

Each block is described by an expansion factor (t), the number of output channels (c), the number of 

times the block is repeated (n), and the stride (s) for downsampling. From the third block onwards, the 

model employs dilated convolutions with a rate of 2 to enlarge the receptive field without increasing the 

computational burden excessively. As the layers deepen from the fifth block, the dilation rate is 

increased to 4, facilitating a broader context aggregation without resolution loss. The architecture 

culminates in a classifier, which integrates a dropout layer for regularization followed by a linear layer 

responsible for the final prediction output. This model demonstrated its real-time operational capabilities 

by running at 6.7 FPS, showcasing high accuracy in segmenting various structural elements such as 

concrete, floor, ceiling, and windows, with a mean pixel accuracy of 0.80 and a Mean IoU of 0.71. The 

detailed results, including IoU, pixel accuracy, precision, and recall, are shown in Table 1.  

 

 
Figure 7. Network architecture of MobileNetV2Dilated. 

 

Table 1. Class-wise performance of the MobileNetV2Dilated model 

Class IoU Pixel Accuracy Recall Precision 

Wall & Column 0.7271 0.7604 0.8786 0.7381 

Floor 0.7552 0.8452 0.9229 0.7293 

Ceiling 0.7949 0.9154 0.9116 0.8169 

Window 0.5755 0.6874 0.7339 0.6950 

Overall 0.7132 0.8021 0.8618 0.7448 
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3.3. Progress Status Estimation 

For occupancy checks [14], this study calculated the points count within the bounding box of each 

element. For any element, if the count exceeded 1000 pts/m2, it was indicated as “In progress”; 

otherwise, it was labeled as “No progress.” Semantic point clouds assist in parsing more detailed 

progress information. Specifically, when multiple categories of semantic point clouds are present within 

each bounding box, the category that constitutes the majority is used as a representative of the progress 

status for that element. Consequently, when walls and columns are predominantly identified as 'Wall & 

Column' and beams as 'Ceilings,' the structural work is deemed completed. Figure 8 illustrates the 

visualization of the Progress Status Estimation, where green represents “In progress” and red indicates 

“No progress.” Most components were correctly identified with their accurate progress status. However, 

there were misidentifications for a column and a beam. These errors are primarily attributed to inherent 

errors in SLAM and constraints associated with the camera's elevation angle and field of view. 

 

Figure 8. The visualization of progress status. 

 

4. CONCLUSION  

This paper proposes a real-time automatic construction progress monitoring framework. The 

framework is deployed on a robotic system with edge computing devices and tested in a real-world 

scenario. The framework uses 4D BIM and visual data collected from the site as input, processes these 

data through semantic SLAM to generate 3D semantic point clouds, and compares the spatial 

relationship between the point clouds and BIM components to ascertain progress status. Semantic 

SLAM enables robots to autonomously navigate and recognize construction site conditions in real-time, 

addressing the delay in progress analysis due to the limitations of existing ACPM methods. This real-

time ACPM approach significantly reduces the risk of delayed identification of critical construction 

issues while enhancing the data collection automation level.  

In its present form, the proposed approach is suitable for element-level progress monitoring. 

However, future research will investigate the applicability of real-time ACPM for activity-level progress 

monitoring. The framework faces limitations such as the robot’s navigation challenges in cluttered or 

uneven terrains, affecting data collection efficiency. Large-scale site monitoring may also surpass the 

memory capabilities of a single robot, posing constraints on operational scope. The framework’s current 

dependency on the inherent accuracy of SLAM poses challenges, as the inherent errors in SLAM are 

likely to be magnified with the expansion of the construction site area. This magnification of errors 

underscores the need for advanced calibration or integration strategies, especially in larger operational 

environments. Future efforts will optimize the proposed framework and evaluate its feasibility and 

performance through additional case studies. In terms of optimization, attempts will be made to extract 

more information from BIM models and integrate it with the SLAM system to improve SLAM 

performance. Regarding semantics, different deep learning models will be explored to assess their 

balance in speed and accuracy. Geometric statistical methods will also be employed to filter out noise 

from the semantic point clouds. 

This study advances construction progress monitoring by integrating cutting-edge technologies that 

improve real-time data processing and analysis. The proposed framework addresses the current 
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challenges in the field and opens new avenues for research and development in construction 

management, aiming for more efficient, accurate, and automated construction processes. 
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