Acknowledgement
The support of the National Science and Technology Council (NSTC), Taiwan, is gratefully acknowledged. This work was supported by the NSTC under Grant No. 112-2221-E-002 -127 -MY3.
References
- A. Pal, J. J. Lin, S.-H. Hsieh, and M. Golparvar-Fard, "Automated vision-based construction progress monitoring in built environment through digital twin," Dev. Built Environ., vol. 16, p. 100247, 2023, doi: 10.1016/j.dibe.2023.100247.
- J. Yang, A. Wilde, K. Menzel, M. Z. Sheikh, and B. Kuznetsov, "Computer Vision for Construction Progress Monitoring: A Real-Time Object Detection Approach," IFIP Adv. Inf. Commun. Technol., vol. 688 AICT, pp. 660-672, 2023, doi: 10.1007/978-3-031-42622-3_47.
- Z. Pucko, N. Suman, and D. Rebolj, "Automated continuous construction progress monitoring using multiple workplace real time 3D scans," Adv. Eng. Informatics, vol. 38, no. October 2017, pp. 27-40, 2018, doi: 10.1016/j.aei.2018.06.001.
- A. Pal and S. H. Hsieh, "Deep-learning-based visual data analytics for smart construction management," Autom. Constr., vol. 131, no. August, p. 103892, 2021, doi: 10.1016/j.autcon.2021.103892.
- S. Raut, S. S. Pimplikar, and K. Sawant, "Effect of Project Cost and Time Monitoring on Progress of Construction Projct," Int. J. Res. Eng. Technol., vol. 02, no. 12, pp. 796-800, 2013, doi: 10.15623/ijret.2013.0212132.
- Z. Liu, D. Kim, S. Lee, L. Zhou, X. An, and M. Liu, "Near Real-Time 3D Reconstruction and Quality 3D Point Cloud for Time-Critical Construction Monitoring," Buildings, vol. 13, no. 2, pp. 1-19, 2023, doi: 10.3390/buildings13020464.
- S. Halder, K. Afsari, J. Serdakowski, S. Devito, M. Ensafi, and W. Thabet, "Real-Time and Remote Construction Progress Monitoring with a Quadruped Robot Using Augmented Reality," Buildings, vol. 12, no. 11, p. 2027, 2022, doi: 10.3390/buildings12112027.
- Z. Jiang, X. Shen, M. H. Ibrahimkhil, K. Barati, and J. Linke, "Scan-Vs-Bim for Real-Time Progress Monitoring of Bridge Construction Project," ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 10, no. 4/W3-2022, pp. 97-104, 2022, doi: 10.5194/isprs-annals-X-4-W3-2022-97-2022.
- P. Kim, J. Chen, J. Kim, and Y. K. Cho, "SLAM-driven intelligent autonomous mobile robot navigation for construction applications," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10863 LNCS, no. January, pp. 254-269, 2018, doi: 10.1007/978-3-319-91635-4_14.
- L. Marcy and I. Iordanova, "Slam and Beacon Data for Automation of Indoor Construction Progress Tracking," IOP Conf. Ser. Mater. Sci. Eng., vol. 1218, no. 1, p. 012009, 2022, doi: 10.1088/1757-899x/1218/1/012009.
- K. Asadi et al., "Building an integrated mobile robotic system for real-time applications in construction," ISARC 2018 - 35th Int. Symp. Autom. Robot. Constr. Int. AEC/FM Hackathon Futur. Build. Things, no. Isarc, 2018, doi: 10.22260/isarc2018/0063.
- C. Feng, N. Fredricks, and V. R. Kamat, "Human-robot integration for pose estimation and semiautonomous navigation on unstructured construction sites," ISARC 2013 - 30th Int. Symp. Autom. Robot. Constr. Mining, Held Conjunction with 23rd World Min. Congr., vol. 48109, pp. 1317-1325, 2013, doi: 10.22260/isarc2013/0148.
- M. Labbe and F. Michaud, "RTAB-Map as an Open-Source Lidar and Visual SLAM Library for Large-Scale and Long-Term Online Operation," Journal of Field Robotics, vol. 36, p. 416446, 2019, doi: 10.1002/rob.21831.
- A. Pal, J. J. Lin, S.-H. Hsieh, and M. Golparvar-Fard, "Activity-level construction progress monitoring through semantic segmentation of 3D-informed orthographic images," Autom. Constr., vol. 157, p. 105157, 2024, doi: 10.1016/j.autcon.2023.105157.