• Title/Summary/Keyword: SLAM(SLAM)

Search Result 362, Processing Time 0.023 seconds

GraphSLAM Improved by Removing Measurement Outliers (측정 아웃라이어 제거를 통해 개선된 GraphSLAM)

  • Kim, Ryun-Seok;Choi, Hyuk-Doo;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.493-498
    • /
    • 2011
  • This paper presents the GraphSLAM improved by selecting the measurement with respect to their likelihoods. GraphSLAM estimates the robot's path and map by utilizing the entire history of input data. However, GraphSLAM's performance suffers a lot from severely noisy measurements. In this paper, we present GraphSLAM improved by the selective measurement method. Thus the presented GraphSLAM provides higher performance compared with the standard GraphSLAM.

Symmetrical model based SLAM : M-SLAM (대칭모형 기반 SLAM : M-SLAM)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The mobile robot which accomplishes a work in explored region does not know location information of surroundings. Traditionally, simultaneous localization and mapping(SLAM) algorithms solve the localization and mapping problem in explored regions. Among the several SLAM algorithms, the EKF (Extended Kalman Filter) based SLAM is the scheme most widely used. The EKF is the optimal sensor fusion method which has been used for a long time. The odometeric error caused by an encoder can be compensated by an EKF, which fuses different types of sensor data with weights proportional to the uncertainty of each sensor. In many cases the EKF based SLAM requires artificially installed features, which causes difficulty in actual implementation. Moreover, the computational complexity involved in an EKF increases as the number of features increases. And SLAM is a weak point of long operation time. Therefore, this paper presents a symmetrical model based SLAM algorithm(called M-SLAM).

OpenVSLAM-based Cooperative Mobile AR System Architecture (OpenVSLAM 기반의 협력형 모바일 SLAM 시스템 설계)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.136-141
    • /
    • 2022
  • In this paper, we designed, implemented, and verified the SLAM system that can be used on mobile devices. Mobile SLAM is composed of a stand-alone type that directly performs SLAM operation on a mobile device, and a mapping server type that additionally configures a mapping server based on FastAPI to perform SLAM operation on the server and transmits data for map visualization to a mobile device. The mobile SLAM system proposed in this paper is to mix the two types in order to make SLAM operation and map generation more efficient. The stand-alone type SLAM system was configured as an Android app by porting the OpenVSLAM library to the Unity engine, and the map generation and performance were evaluated on desktop PCs and mobile devices. The mobile SLAM system in this paper is an open source project, so it is expected to help develop AR contents based on SLAM in a mobile environment.

Building a Mobile AR System Based on Visual SLAM (Visual SLAM 기반의 모바일 증강현실 시스템 구축)

  • Song, Ju Eun;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.96-101
    • /
    • 2021
  • The SLAM market is growing rapidly with advances in Machine Learning, Drones, Augmented Reality technologies. However, due to the absence of an open source-based SLAM library for developing AR content, most SLAM researchers are required to conduct their own research and development to customize SLAM. In this paper, we propose an opensource-based Mobile Markerless AR System by building our own pipeline based on Visual SLAM. To implement the Mobile AR System of this paper, it uses ORB-SLAM3 and Unity Engine and We experimented with running our system in a real environment and confirming it in the Unity Engine's Mobile Viewer. Through this experimentation, we can verify that the Unity Engine and the SLAM System are tightly integrated and communicate smoothly. Also, we expect to accelerate the growth of SLAM technology through this research.

Past and State-of-the-Art SLAM Technologies (SLAM 기술의 과거와 현재)

  • Song, Jae-Bok;Hwang, Seo-Yeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.372-379
    • /
    • 2014
  • This paper surveys past and state-of-the-art SLAM technologies. The standard methods for solving the SLAM problem are the Kalman filter, particle filter, graph, and bundle adjustment-based methods. Kalman filters such as EKF (Extended Kalman Filter) and UKF (Unscented Kalman Filter) have provided successful results for estimating the state of nonlinear systems and integrating various sensor information. However, traditional EKF-based methods suffer from the increase of computation burden as the number of features increases. To cope with this problem, particle filter-based SLAM approaches such as FastSLAM have been widely used. While particle filter-based methods can deal with a large number of features, the computation time still increases as the map grows. Graph-based SLAM methods have recently received considerable attention, and they can provide successful real-time SLAM results in large urban environments.

RL-based Path Planning for SLAM Uncertainty Minimization in Urban Mapping (도시환경 매핑 시 SLAM 불확실성 최소화를 위한 강화 학습 기반 경로 계획법)

  • Cho, Younghun;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2021
  • For the Simultaneous Localization and Mapping (SLAM) problem, a different path results in different SLAM results. Usually, SLAM follows a trail of input data. Active SLAM, which determines where to sense for the next step, can suggest a better path for a better SLAM result during the data acquisition step. In this paper, we will use reinforcement learning to find where to perceive. By assigning entire target area coverage to a goal and uncertainty as a negative reward, the reinforcement learning network finds an optimal path to minimize trajectory uncertainty and maximize map coverage. However, most active SLAM researches are performed in indoor or aerial environments where robots can move in every direction. In the urban environment, vehicles only can move following road structure and traffic rules. Graph structure can efficiently express road environment, considering crossroads and streets as nodes and edges, respectively. In this paper, we propose a novel method to find optimal SLAM path using graph structure and reinforcement learning technique.

ORB-SLAM based SLAM Framework for the Spatial Recognition using Android Oriented Tethered Type AR Glasses (안드로이드 기반 테더드 타입 AR 글래스의 공간 인식을 위한 ORB-SLAM 기반 SLAM프레임워크 설계)

  • Do-hoon Kim;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • In this paper, we proposed a software framework structure to apply ORB-SLAM, the most representative of SLAM algorithms, so that map creation and location estimation technology can be applied through tethered AR glasses. Since tethered AR glasses perform only the role of an input/output device, the processing of camera and sensor data and the generation of images to be displayed through the optical display module must be performed through the host. At this time, an Android-based mobile device is adopted as the host. Therefore, the major libraries required for the implementation of AR contents for AR glasses were hierarchically organized, and spatial recognition and location estimation functions using SLAM were verified.

  • PDF

Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM (SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현)

  • Kim, Yu-Jung;Kang, Jun-Woo;Yoon, Jung-Bin;Lee, Yu-Bin;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.687-694
    • /
    • 2022
  • In this paper, we proposed an autonomous vehicle platform that delivers goods to a designated destination based on the SLAM (Simultaneous Localization and Mapping) map generated indoors by applying the Visual SLAM technology. To generate a SLAM map indoors, a depth camera for SLAM map generation was installed on the top of a small autonomous vehicle platform, and a tracking camera was installed for accurate location estimation in the SLAM map. In addition, a convolutional neural network (CNN) was used to recognize the label of the destination, and the driving algorithm was applied to accurately arrive at the destination. A prototype of an indoor delivery autonomous vehicle was manufactured, and the accuracy of the SLAM map was verified and a destination label recognition experiment was performed through CNN. As a result, the suitability of the autonomous driving vehicle implemented by increasing the label recognition success rate for indoor delivery purposes was verified.

SLAM of a Mobile Robot using Thinning-based Topological Information

  • Lee, Yong-Ju;Kwon, Tae-Bum;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-583
    • /
    • 2007
  • Simultaneous Localization and Mapping (SLAM) is the process of building a map of an unknown environment and simultaneously localizing a robot relative to this map. SLAM is very important for the indoor navigation of a mobile robot and much research has been conducted on this subject. Although feature-based SLAM using an Extended Kalman Filter (EKF) is widely used, it has shortcomings in that the computational complexity grows in proportion to the square of the number of features. This prohibits EKF-SLAM from operating in real time and makes it unfeasible in large environments where many features exist. This paper presents an algorithm which reduces the computational complexity of EKF-SLAM by using topological information (TI) extracted through a thinning process. The global map can be divided into local areas using the nodes of a thinning-based topological map. SLAM is then performed in local instead of global areas. Experimental results for various environments show that the performance and efficiency of the proposed EKF-SLAM/TI scheme are excellent.

A New Feature-Based Visual SLAM Using Multi-Channel Dynamic Object Estimation (다중 채널 동적 객체 정보 추정을 통한 특징점 기반 Visual SLAM)

  • Geunhyeong Park;HyungGi Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2024
  • An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.