• Title/Summary/Keyword: SLAB model

Search Result 654, Processing Time 0.031 seconds

Numerical Analysis of Prestressed Concrete Pavements Subjected to Transverse Post Tensioning (횡방향 긴장에 의한 프리스트레스트 콘크리트 포장의 거동분석)

  • Kim, Seong-Min;Yoon, Dong-Joo;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.257-267
    • /
    • 2008
  • This study was conducted to investigate the stress distribution in the prestressed concrete pavement (PSCP) when the transverse post tensioning was applied. By performing the structural analyses using a finite element model of PSCP, the effect of anchor spacing and the relationship between the longitudinal and transverse post tensioning were evaluated. The analysis results showed that as the anchor spacing became smaller, the stresses were more uniformly distributed and the ranges of the stress losses were reduced; however, the economy should be considered. As the anchor spacing became larger, the difference between the average transverse stress and the transverse stresses at various locations such as shoulder, wheel pass, and center of the slab, increased. The transverse post tensioning induced the additional tensile forces in the longitudinal tendons, but the magnitude was negligibly small, and the longitudinal and transverse post tensioning could be designed independently. The use of the transverse stress distribution for the design of the post tensioning was also discussed in this paper.

  • PDF

Stress Change Varying with Hole Place of RC Column (유공위치 변경에 따른 RC기둥의 내력변화에 관한 실험적 연구)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.70-79
    • /
    • 2006
  • many plumbing system are needed in the ceiling of the building as it becomes advanced more and more. This leads to make effective space between ceiling level and slab less. Also, piping system is not suitably arranged and operated if it is bent around the columns which they are a lot. But this system can be more effective if it passes through the columns directly. Most people think that those columns should not be damaged with such as holes. But actually this is existed in a hotel building in switzerland. This study is to fing out how much capacity the columns become damaged and low using model size of $20cm{\times}30cm$ rectangular section, and 160cm long, in the structural test. it's compressive strength is focused on $240kg/cm^{2}$ design strength, commonly used in korea. Compressive test for them was done at Hanyang University using UTM one thousand tone(1000t) capacity. Variable numbers for the study are one hole of dia 3cm with distance 20cm or 40cm, two holes of dia 3cm with 20cm and 40cm distance, one hole of dia 5cm with distance 20cm and 40cm, two holes of dia 5cm with 20cm and 40cm distance, me eccentric hole with 20cm and 40cm distance, Normal(without hole). two test specimens of each variable are made for the test. ED5H20 capacity was 16.7% decreased, compared to normal one. While ED5H40 distant 40cm from the end of column top showed 19.5% capacity decrease, compared to normal one. Strain of ED5H20 diameter 5cm, in distance of 20cm form the top of the column was less 5% than the one of diameter 3cm. Finally, conclusions are that in case of hole diameter 3cm, located at 20cm from the end of the column top, capacity was decreased down to 3, percent only compared to the same diameter hole with 20cm distant from the end of it.

Numerical simulations of the vertical kink oscillations of the solar coronal loop with field aligned flows

  • Pandey, V.S.;Magara, T.;Lee, D.H.;Selwa, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.103.1-103.1
    • /
    • 2011
  • Recent observations by Hinode show weakly-attenuated coronal loop oscillations in the presence of background flow (Ofman & Wang 2008, A&A, 482, L9). We study the vertical kink oscillations in solar coronal loops, considering field aligned flows inside the loops as well as surrounding the loops environment. The two dimensional numerical model of straight slab is used to explore the excitation and attenuation of the impulsively triggered fast magnetosonic standing kink waves. A full set of time dependent ideal magnetohydrodynamics equations is solved numerically taking into account the value of flow of the order of observed flows detected by SOT/Hinode. We find that relaxing the assumption of the limited flows within the loops enhances the damping rate of the fundamental mode of the standing kink waves by 2 - 3 % as compared to flow pattern which is basically localized within the loops. We further notice that extending the flow pattern beyond the loop thickness also enhances the strength of the shock associated with slow magnetoacoustic waves, recognized as an addition feature detected in the numerical simulation. The wider out-flow pattern destroys the oscillation patterns early as compared to narrower flow pattern, in other words we can say that it affects the durability of the oscillation. However, for the typical coronal loops parameters we find that the observed durability periods of the SOT/Hinode observation can be achieved with an out-flow Gaussian patterns for which half-width is not greater than factor 2.0 of the loop-half-width. explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Prediction of Failure Mode Under Static Loading in Long Span Bridge Deck Slabs by FEM (유한요소해석에 의한 장지간 바닥판의 정적파괴형태 예측)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • An analytical model is presented to predict the static behavior of the long-span prestressed concrete bridge deck(the long-span PSC deck). The finite element analysis is performed and the results are compared with that of the previous experimental test. The load-deflection relationship curves by FEM are in good agreement with the results reported in the previous study. The failure mode of all test specimens is predicted by the punching shear in this study. It is also observed in the previous experimental test. The main objective of this paper is presenting supportive method to predict static behavior of the long-span PSC deck slab. It is not simulating the punching shear behavior graphically.

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Light Coupling and Propagation Between a Fiber and a Dielectric Slab with a Conductor Cladding (측면 연마된 광섬유와 완전도체면 아래의 유전체 사이에서의 결합과 전파특성의 해석)

  • Kwon, Kwang-Hee;Yoon, Ki-Hong;Kim, Jeong-Hoon;Song, Jae-Won;Park, Euy-Dong;Son, Seok-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.70-79
    • /
    • 2003
  • A theoretical presentation of evanescent coupling is offered with respect to the refractive indexes between a side polished optical fiber and an infinitely planar waveguide with a conductor cladding(PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with the perfect conductor(PEC) on one side. The behavior of the distributed coupler is examined using a coupled mode model, which takes account of the two dimensions of the waveguide configuration. The coupling and propagation of light were found to depend on both the relationship between the refractive index values of each structure and the configuration of the side polished fiber used in the PWGCC. The spreading of light in the unconfined direction of the PWGCC is described in terms of a simple geometrical interpretation of the synchromization condition that is in agreement with a previous investigation of the problem based on the coupled-mode theory(CMT). The power of the light propagation in the fiber decreased exponentially along the fiber axis as it was transferred to the PWGCC.

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.