DOI QR코드

DOI QR Code

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load

지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가

  • 심윤보 (서울특별시 시설관리공단) ;
  • 김연태 (서울과학기술대학교 건설시스템공학과) ;
  • 김상철 (한서대학교 토목공학과)
  • Received : 2015.10.08
  • Accepted : 2015.11.11
  • Published : 2016.03.01

Abstract

To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.

본 연구는 지진이 발생할 경우 장대레일교량에 있어 레일과 상판 간의 종방향 상호작용에 미치는 영향을 검토하기 위한 것으로, 해석모델에 여러 하중조합과 함께 지진하중을 적용함으로써 대상 철도교량 레일에서의 축방향 부가응력과 레일-상판 간 상대변위의 변화를 산출하였다. 해석 결과, 본 연구 대상 철도교량의 경우 철도시설공단에서 제시하고 있는 표준응답스펙트럼을 적용할 때 레일부가응력은 대부분의 하중조합에 대해 허용기준 내의 값을 보이고 있는 반면, 레일-상판 상대변위는 공단에서 제시하는 허용기준을 초과하고 있는 것으로 나타났다. 따라서 레일-상판 상대변위가 레일부가응력에 비해 상대적으로 더 허용기준을 만족시키기 어렵다는 것을 알 수 있었으며, 아울러 고베 대지진과 같은 큰 규모의 지진이 발생하면 레일부가응력과 레일-상판 상대변위는 허용기준을 충족시키지 못하므로 이에 대한 적절한 내진 대비가 필요하다.

Keywords

References

  1. Goicolea. J. M., Dominguez, J., Navarro, J. A., and Gabaldon, F. (2002), New Dynamic Analysis Methods for Railway Bridges in Codes and EUROCODE 1, Railway Bridges, IABMAS, 1-43.
  2. Han, S. Y., Han, T. H., Kang, M. C., and Kang, Y. J. (2012), Analysis of the Interaction between Curved Continuous Welded Rail Track and the Curved Bridge, Journal of Korean Society of Hazard Mitigation, KOSHAM, 12(1), 119-126 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.1.119
  3. Kerr, A. D., and Accorsi, M. L. (1987), Numerical Validation of the Track Equations for Static Problems. Int. J. of Mesh. Sci, 29(1), 15-27. https://doi.org/10.1016/0020-7403(87)90071-3
  4. KHRC (1995), Bridge Design Manual (BRDM), Final Report. Systra, France.
  5. Kim, D. H., and Han, K. S. (2003), A Study on the Characteristics of Axial Force in Bridge with Continuous Welded Rail, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 7(1), 251-258 (in Korean).
  6. Kim, J. J. (2013), Track-bridge Interaction Characteristics due to Cycle Loads, Master''s Thesis, Chungnam National University (in Korean).
  7. Korea Meteorological Administration, KMA (2015), http://www.kma.go.kr/weather/earthquake/report.jsp
  8. KR (2014), KR C-08080 : Track-bridge longitudinal interaction analysis (in Korean).
  9. Lee, D. J. (2008), Study on the Longitudinal Interactional Safety of Concrete Track in Railway, Master's Thesis, Seoul National University of Science and Technology (in Korean).
  10. Lee, J. D. (2006), Rail Engineering, Noh-Hae Pub., Seoul, Korea (in Korean).
  11. Lee, W. C., Ryu, H. J., Lim, N. H., and Lee, C. O. (2007), A Study on the Application of the Beam Column Theory to Presume the Axial Force of the Continuous Welded Rail, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 11(6), 159-168 (in Korean).
  12. Lim, N. H., Choi, S. H., Lee, J. O., and Sung, I. H. (2005), Sensitivity of the Ballast Resistance and Track Irregularity on the Track Stability, Journal of Korean Society of Steel Construction, KSSC, 17(5), 519-526 (in Korean).
  13. UIC (2001), Track/bridge Interaction Recommendation for Calculations. 774-3R, UIC, Paris, France.
  14. Wang, P., Ren, J. J., Xiang, R., and Liu, X. Y. (2012), Influence of Rub-plate Length on Forces and Displacements of Longitudinally Coupled Slab Track for a Bridge Turnout, Proceedings of the Institution of Mechanical Engineers, Part F, Journal Rail and Rapid Transit, 226(3). 23-29.
  15. Yun, K. M,, Choi, J. Y,, Lee, C. O., and Lim, N. H, (2012), Modification of the Conventional Method for the Track-bridge Interaction, Applied Mechanics and Materials, 204-208, 1988-1991 (in Korean). https://doi.org/10.4028/www.scientific.net/AMM.204-208.1988
  16. Yun, K. M. (2012), A Technical Point to be Considered for the Analysis of Track-bridge Interaction Considering the Loading Combination, Master's Thesis, Chungnam National University (in Korean).
  17. Yun, K. M., Jeon, B. H., Choi, S. H., and Lim, N. H. (2015), Additional Axial Stress of CWR Track on the Bridge According to the Variation of Design Vehicle Load, Journal of the Korea Academia-Industrial Cooperation Society, 16(1), 807-813 (in Korean). https://doi.org/10.5762/KAIS.2015.16.1.807