• Title/Summary/Keyword: SIMPLEST

Search Result 438, Processing Time 0.022 seconds

The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

  • Netto, Luis E.S.;Antunes, Fernando
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • A challenge in the redox field is the elucidation of the molecular mechanisms, by which $H_2O_2$ mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the $H_2O_2$ sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in $H_2O_2$ signaling that are not mutually exclusive. In the simplest pathway, $H_2O_2$ signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by $H_2O_2$ is too slow ($10^1M^{-1}s^{-1}$ range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high $H_2O_2$ concentrations, making the direct oxidation feasible. Alternatively, high $H_2O_2$ levels can hyperoxidize peroxiredoxins leading to local building up of $H_2O_2$ that then could oxidize a signaling protein (floodgate hypothesis). In a second model, $H_2O_2$ oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.

CHARACTERIZATION OF METALLIC CONTAMINATION OF SILICON WAFER SURFACES FOR 1G DRAM USING SYNCHROTRON ACCELERATOR

  • Kim, Heung-Rak;Kun-Kul, Ryoo
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.239-243
    • /
    • 1999
  • At Present, 200mm wafer technology is being applied for commercial fabrications of 64, 128, and 256 M DRAM devices, and 300mm technology will be evolved for 1G DRAM devices in the early 21th century, recognizing limitations of several process technologies. In particular recognition has been realized in harmful effects of surface contamination of trace metals introduced during devicing processes. Such a guide line for surface metal contamination has been proposed as 1E9 and 1E10 atoms/$\textrm{cm}^2$ of individual metal contamination for wafering and devicing of 1G DRAM, respectively, and so its measurement limit should be at least 1E8 atoms/$\textrm{cm}^2$. The detection limit of present measurement systems is 2E9 atoms/$\textrm{cm}^2$ obtainable with TRXFA(Total Reflection X-Ray Fluorescence Analysis). TRXFA is nondestructive and the simplest in terms of operation, and it maps the whole wafer surfaces but needs detection improvement. X-Ray intensity produced with synchrotron accelerator is much higher than that of conventional X-ray sources by order of 4-5 magnitudes. Hence theoretically its reactivity with silicon surfaces is expected to be much higher than the conventional one, realizing improvement of detection limit. X-ray produced with synchrotron accelerator is illuminated at a very low angle with silicon wafer surfaces such as 0.1 degree and reflects totally. Hence informations only from surface can be collected and utilized without overlapping with bulk informations. This study shows the total reflection phenomenon and quantitative improvement of detection limit for metallic contamination. It is confirmed that synchrotron X-ray can be a very promising alternative for realizing improvement of detection limit for the next generation devices.

  • PDF

Integer Programming-based Local Search Technique for Linear Constraint Satisfaction Optimization Problem (선형 제약 만족 최적화 문제를 위한 정수계획법 기반 지역 탐색 기법)

  • Hwang, Jun-Ha;Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.47-55
    • /
    • 2010
  • Linear constraint satisfaction optimization problem is a kind of combinatorial optimization problem involving linearly expressed objective function and complex constraints. Integer programming is known as a very effective technique for such problem but require very much time and memory until finding a suboptimal solution. In this paper, we propose a method to improve the search performance by integrating local search and integer programming. Basically, simple hill-climbing search, which is the simplest form of local search, is used to solve the given problem and integer programming is applied to generate a neighbor solution. In addition, constraint programming is used to generate an initial solution. Through the experimental results using N-Queens maximization problems, we confirmed that the proposed method can produce far better solutions than any other search methods.

A Study on Magnetic Field Reduction Design Technique around 345 kV Transmission Line with 2-wire Set Passive Loop (2선식 수동루프를 이용한 345[kV] 송전선 주변의 자계저감 설계기법 연구)

  • Kim, Eung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • The controversy over the risk of the human body being affected by electromagnetic fields emitted from 60 Hz power lines continues without end. There are currently no new studies or research progress being made in this direction that is notable, and the number of civil complaints is gradually increasing. The problem is that each study produces different results, among which the effect of exposure to magnetic fields on childhood leukemia is a major one. In Korea, an electrician who was maintaining a 22.9 kV power line died of leukemia, which has recently been recognized as an occupational disease. Methods to reduce magnetic fields from power lines include shielding with wire loops, incorporating split phases and compaction techniques, installing underground power lines, converting to high-voltage direct current (HVDC), and increasing the ground clearance of transmission towers. Depending on whether a separate power supply is needed or not, there are two types of wire loops: passive loop and active loop. Magnetic field reduction is currently done through underground power lines; however, the disadvantage of this process is high construction costs. Installing passive loops, with relatively low construction costs, leads to lower magnetic field reduction rates than installing underground cables and a weakness to not solving the landscape problem. This methodological study aims at designing methods and reducing the effects of 2-wire set loops-the simplest and most practical. Since the method proposed in this study has been designed after analyzing the distribution of complex electromagnetic fields near the expected loop installation location, a practical design can be implemented without the need for any difficult optimization programming.

A Study for Creation of Identity of K-Pop: Focusing on Westernization of Korean Traditional Rhythms, Samulnori (K-Pop의 정체성 창출을 위한 연구 - 사물놀이 리듬의 세계화를 중심으로 -)

  • Lee, Bong Jae
    • (The) Research of the performance art and culture
    • /
    • no.32
    • /
    • pp.269-305
    • /
    • 2016
  • in the conclusion, appealing ways of expression regarding a wider and more variated range are to be tested and it is stressed the necessity of this to be shown to the general public through an ongoing constructive research on the originality of contents arising from the diversity of music genres And, concerning dance music, it is also pointed out the necessity of in-depth research on the rhythms that take into account the universal emotions of the general public to create diverse music that harmonizes with the dance and can be enjoyed by all. In the world of music, just a simplest attempt can bring about many changes. Depending on the identity of those who lead it, that change's appearance or shape may also be different. Moreover, changes arisen from testing simplified rhythms will let experts to create new music. K-Pop is to test, more than anything, diverse strategies and new changes to be selected by such a wide public. However, such changes ought not to degenerate into mere imitations and can neither become obsolete. The reason lies in the fact that the current efforts for the sake of diversification and creativity of K-Pop genre might well remain as the traditional elements of the K-pop of the future.

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

Current Control for an AFE Rectifier Using Space Vector PWM (공간벡터변조방식에 의한 AFE정류기의 전류제어)

  • Jeon, Cheol-Hwan;Hur, Jae-Jung;Yoon, Kyoung-Kuk;Yoo, Heui-Han;Kim, Sung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.498-503
    • /
    • 2019
  • Electric propulsion ships are gaining widespread interest in the marine industry owing to extreme air pollution concerns. Consequently, several studies are actively being conducted for improving the power quality. Various methods have been developed that incorporate passive filters, notch filters, and active filters for reducing the harmonic content in the input current of a conventional diode front end rectifier. Among such filters, the active front end (AFE) rectifier is considered as an excellent technology. In this paper, current control for an AFE rectifier employing space vector PWM (Pulse Width Modulation) is proposed. Conventional current control methods for the AFE rectifier, hysteresis, SPWM (Sinusoidal Pulse Width Modulation), and SVPWM (Space Vector Pulse Width Modulation) were simulated by employing the PSIM software tool for analysis and comparisons. The results corroborate that SVPWM has the simplest structure and provides the best performance.

A Numerical Study on the Structural Stability Optimization of the Core Components of a 17cc Automotive Compressor (17cc급 자동차용 압축기 핵심부품의 구조 안정성에 관한 수치적 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.69-75
    • /
    • 2021
  • Fuel economy has always been a major issue for the automotive industry due to environmental concerns. In particular, it is known that only 5-20% of the energy generated in a car that mainly uses an internal combustion engine is converted to increase fuel efficiency, many methods have been proposed. Among these methods, weight reduction is most commonly used because it is the simplest and cheapest. Weight is always the main reason for energy consumption, therefore, reducing weight is the best way to increase fuel efficiency while simultaneously saving on material costs. To reduce the weight of a compressor, material substitution is used. However, aluminum (a lighter metal substitute) is more fragile than steel, therefore, structural stability must be verified through testing. In this paper, we performed a 3D analysis to investigate whether aluminum can be used without compromising structural stability. Our investigation included static analysis and thermal analysis. As a result, we found that an aluminum swash plate can be safely applied on a shaft instead of steel; it reduces weight while maintaining stability that is equal to or better than steel.

Patient Exposure Dose Reduction in Coronary Angiography & Intervention (심혈관조영술 및 중재술 시 환자 선량 감소방안)

  • Lim, Do-Hyung;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.69-76
    • /
    • 2022
  • This study, the method of reducing the exposure dose by changing the geometrical requirements among the preceding studies and the method of directly wearing a protector on the patient were used to expose the patient. A comparative experiment was conducted on the method of reducing the dose and the most effective method for reducing the exposure dose was investigated. Using the phantom, the dose of the lens, thyroid gland, and gonad gland in the 5 views most used in coronary angiography and intervention accumulated 5 times for 10 seconds at 60~70 kV, 200~250 mA as an automatic controller of the angiography system, and measured by Optically Stimulated Luminescent Dosimeter(OSLD). SID 100 cm and Cine 15 f/s as a control group the experiment was conducted by dividing the experimental group into 3 groups: a group lowered to Cine 7.5 f/s, a phantom protector, and a group lowered to 95 cm SID. As a result of the experiment, showing decrease in exposure dose compared to the control group. Lowering the cine frame may be the simplest and most effective method to reduce the exposure dose, but there is a limit that it cannot be applied if the operator judges that the diagnostic value is small or feels uncomfortable with the procedure. Conclusion as fallow reducing the exposure dose by directly wearing protector is the next best solution, and it is hoped that the conclusions obtained through this study will help reduce the exposure dose to unnecessary organ.

Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition

  • Lu, Yonggang;Wang, Zhengwei;Zhu, Rongsheng;Wang, Xiuli;Long, Yun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2720-2727
    • /
    • 2022
  • The Generation IV Lead-cooled fast reactor (LFR) take the liquid lead or lead-bismuth eutectic alloy (LBE) as the coolant of the primary cooling circuit. Combined with the natural characteristics of lead alloy and the design features of LFR, the system is the simplest and the number of equipment is the least, which reflects the inherent safety characteristics of LFR. The nuclear main coolant pump (MCP) is the only power component and the only rotating component in the primary circuit of the reactor, so the various operating characteristics of the MCP are directly related to the safety of the nuclear reactor. In this paper, various working conditions that may occur in the normal rotation (positive rotating) of the MCP and the corresponding internal flow characteristics are analyzed and studied, including the normal pump condition, the positive-flow braking condition and the negative-flow braking condition. Since the corrosiveness of LBE is proportional to the fluid velocity, the distribution of flow velocity in the pump channel will be the focus of this study. It is found that under the normal pump condition and positive-flow braking conditions, the high velocity region of the impeller domain appears at the inlet and outlet of the blade. At the same radius, the pressure surface is lower than the back surface, and with the increase of flow rate, the flow separation phenomenon is obvious, and the turbulent kinetic energy distribution in impeller and diffuser domain shows obvious near-wall property. Under the negative-flow braking condition, there is obvious flow separation in the impeller channel.