DOI QR코드

DOI QR Code

The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

  • Netto, Luis E.S. (Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo) ;
  • Antunes, Fernando (Departamento de Quimica e Bioquimica, Centro de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa)
  • Received : 2015.12.15
  • Accepted : 2015.12.18
  • Published : 2016.01.31

Abstract

A challenge in the redox field is the elucidation of the molecular mechanisms, by which $H_2O_2$ mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the $H_2O_2$ sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in $H_2O_2$ signaling that are not mutually exclusive. In the simplest pathway, $H_2O_2$ signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by $H_2O_2$ is too slow ($10^1M^{-1}s^{-1}$ range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high $H_2O_2$ concentrations, making the direct oxidation feasible. Alternatively, high $H_2O_2$ levels can hyperoxidize peroxiredoxins leading to local building up of $H_2O_2$ that then could oxidize a signaling protein (floodgate hypothesis). In a second model, $H_2O_2$ oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.

Keywords

References

  1. Abbasi, A., Corpeleijn, E., Gansevoort, R.T., Gans, R.O.B., Struck, J., Schulte, J., Hillege, H.L., van der Harst, P., Stolk, R.P., Navis, G., et al. (2014). Circulating peroxiredoxin 4 and type 2 diabetes risk: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 57, 1842-1849. https://doi.org/10.1007/s00125-014-3278-9
  2. Ahsan, M.K., Lekli, I., Ray, D., Yodoi, J., and Das, D.K. (2009). Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart Antioxid. Redox Signal. 11, 2741-2758. https://doi.org/10.1089/ars.2009.2683
  3. Aslund, F., Zheng, M., Beckwith, J., and Storz, G. (1999). Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA 96, 6161-6165. https://doi.org/10.1073/pnas.96.11.6161
  4. Berndt, C., Lillig, C.H., and Holmgren, A. (2007). Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 292, H1227-H1236. https://doi.org/10.1152/ajpheart.01162.2006
  5. Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984. https://doi.org/10.1038/nature02075
  6. Boisnard, S., Lagniel, G., Garmendia-Torres, C. Molin, M., Boy-Marcotte, E., Jacquet, M., Toledano, M.B., Labarre, J., and Chedin, S. (2009). $H_2O_2$ activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae. Eukaryot. Cell 8, 1429-1438. https://doi.org/10.1128/EC.00106-09
  7. Boronat, S., Domenech, A., Paulo, E., Calvo, I.A., Garcia-Santamarina, S., Garcia, P., Encinar Del Dedo, J., Barcons, A., Serrano, E., Carmona, M., et al. (2014). Thiol-based $H_2O_2$ signalling in microbial systems. Redox Biol. 2, 395-399 https://doi.org/10.1016/j.redox.2014.01.015
  8. Branco, M.R., Marinho, H.S., Cyrne, L., and Antunes, F. (2004). Decrease of $H_2O_2$ plasma membrane permeability during adaptation to $H_2O_2$ in Saccharomyces cerevisiae. J. Biol. Chem. 279, 6501-6506. https://doi.org/10.1074/jbc.M311818200
  9. Brito, P.M., and Antunes, F. (2014). Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins. Front Chem. 2, 82.
  10. Brown, J.D., Day, A.M., Taylor, S.R., Tomalin, L.E., Morgan, B.A., and Veal, E.A. (2013). A peroxiredoxin promotes $H_2O_2$ signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep. 5, 1425-1435. https://doi.org/10.1016/j.celrep.2013.10.036
  11. Calvo, I.A., Boronat, S., Domenech, A., Garcia-Santamarina, S., Ayte, J., and Hidalgo, E. (2013). Dissection of a redox relay:$H_2O_2$-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle. Cell Rep. 5, 1413-1424. https://doi.org/10.1016/j.celrep.2013.11.027
  12. Cao, J., Schulte, J., Knight, A., Leslie, N.R., Zagozdzon, A., Bronson, R., Manevich, Y., Beeson, C., and Neumann, C.A. (2009).Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J. 28, 1505-1517. https://doi.org/10.1038/emboj.2009.101
  13. Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994).Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
  14. Chen, K., Kirber, M.T., Xiao, H., Yang, Y., and Keaney, J.F. (2008). Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol. 181, 1129-1139. https://doi.org/10.1083/jcb.200709049
  15. Dagnell, M., Frijhoff, J., Pader, I., Augsten, M., Boivin, B., Xu, J., Mandal, P.K., Tonks, N.K., Hellberg, C., Conrad, M., et al. (2013). Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-receptor tyrosine kinase signaling. Proc. Natl. Acad. Sci. USA 110, 13398-13403. https://doi.org/10.1073/pnas.1302891110
  16. Day, A.M., Brown, J.D., Taylor, S.R., Rand, J.D., Morgan, B.A., and Veal, E.A. (2012). Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival .Mol. Cell 45, 398-408. https://doi.org/10.1016/j.molcel.2011.11.027
  17. Delaunay, A., Pflieger, D., Barrault, M. B., Vinh, J., and Toledano, M. B. (2002). A thiol peroxidase is an $H_2O_2$ receptor and redoxtransducer in gene activation. Cell 111, 471-481. https://doi.org/10.1016/S0092-8674(02)01048-6
  18. Denu, J.M., and Tanner, K.G. (1998). Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633-5642. https://doi.org/10.1021/bi973035t
  19. Du, Y., Zhang, H., Zhang, X., Lu, J., and Holmgren, A. (2013). Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J. Biol. Chem. 288, 32241-32247. https://doi.org/10.1074/jbc.M113.495150
  20. Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434-450. https://doi.org/10.1021/tx100413v
  21. Fomenko, D.E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M., Rutherford, J.C., Siu, K.L., Jin, D.Y., Winge, D.R., et al. (2011). Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA 108, 2729-2734. https://doi.org/10.1073/pnas.1010721108
  22. Gutscher, M., Sobotta, M.C., Wabnitz, G.H., Ballikaya, S., Meyer, A.J., Samstag, Y., and Dick, T.P.(2009) Proximity-based protein thiol oxidation by $H_2O_2$-scavenging peroxidases. J. Biol. Chem. 284, 31532-31540. https://doi.org/10.1074/jbc.M109.059246
  23. Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. https://doi.org/10.1089/ars.2010.3624
  24. Hayashi, T., Ueno, Y., and Okamoto, T. (1993). Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J. Biol. Chem. 268, 11380-11388.
  25. Harald, H.H.W., Schmidt, R.S., Vollbracht, C., Paulsen, G., Riley, D., Daiber, A., and Cuadrado, A. (2015). Antioxidants in translational medicine. Antioxid. Redox Signal. 10, 1130-1143.
  26. Irwin, M.E., Rivera-Del Valle, N., and Chandra, J. (2013). Redox control of leukemia: from molecular mechanisms to therapeutic opportunities Antioxid. Redox Signal. 18, 1349-1383 https://doi.org/10.1089/ars.2011.4258
  27. Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J. W., et al. (2004). Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635 https://doi.org/10.1016/j.cell.2004.05.002
  28. Jarvis, R.M., Hughes, S.M., and Ledgerwood, E.C. (2012). Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522-1530. https://doi.org/10.1016/j.freeradbiomed.2012.08.001
  29. Jones, D.P. (2006). Redefining oxidative stress. Antioxid. Redox Signal. 8, 1865-1879. https://doi.org/10.1089/ars.2006.8.1865
  30. Kaszubska, W., Falls, H.D., Schaefer, V.G., Haasch, D., Frost, L., Hessler, P., Kroeger, P.E., White, D.W., Jirousek, M.R., and Trevillyan, J.M. (2002). Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol. Cell. Endocrinol. 195, 109-118. https://doi.org/10.1016/S0303-7207(02)00178-8
  31. Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., and Lubec, G. (2003). Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res. 967, 152-160. https://doi.org/10.1016/S0006-8993(02)04243-9
  32. Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419-16424. https://doi.org/10.1073/pnas.0407396101
  33. Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
  34. Lee, C., Lee, S.M., Mukhopadhyay, P., Kim, S.J., Lee, S.C., Ahn, W.S., Yu, M.H., Storz, G., and Ryu, S.E. (2004). Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11, 1179-1185. https://doi.org/10.1038/nsmb856
  35. Lee, S., Kim, S.M., and Lee, R.T. (2013). Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid. Redox Signal. 18, 1165-1207 https://doi.org/10.1089/ars.2011.4322
  36. Little, C., and O'Brien, P.J. (1969). Mechanism of peroxideinactivation of the sulphydryl enzyme glyceraldehyde-3-phophate dehydrogenase. Eur. J. Biochem.10, 533-538.
  37. MacDiarmid, C.W., Taggart, J., Kerdsomboon, K., Kubisiak, M., Panascharoen, S., Schelble, K., and Eide, D.J. (2013). Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J. Biol. Chem. 288, 31313-31327. https://doi.org/10.1074/jbc.M113.512384
  38. Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001). Insulin-stimulated hydrogen peroxide reversibly inhibits proteintyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938-21942. https://doi.org/10.1074/jbc.C100109200
  39. Marinho, H.S., Real, C., Cyrne, L., Soares, H., and Antunes, F. (2014). Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535-562. https://doi.org/10.1016/j.redox.2014.02.006
  40. Matthews, J.R., Wakasugi, N., Virelizier, J.L., Yodoi, J., and Hay, R.T. (1992). Thioredoxin regulates the DNA binding activity of NF-${\kappa}B$ by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20, 3821-3830. https://doi.org/10.1093/nar/20.15.3821
  41. Meng, T., Fukada, T., and Tonks, N.K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387-399. https://doi.org/10.1016/S1097-2765(02)00445-8
  42. Meyer, Y., Buchanan, B.B., Vignols, F., and Reichheld, J.P. (2009). Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet. 43, 335-367. https://doi.org/10.1146/annurev-genet-102108-134201
  43. Miller, E.W., Dickinson, B.C., and Chang, C.J. (2010). Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA 107, 15681-15686. https://doi.org/10.1073/pnas.1005776107
  44. Mishina, N.M., Tyurin-Kuzmin, P.A., Markvicheva, K.N., Vorotnikov, A.V., Tkachuk, V.A., Laketa, V., et al. (2011). Does cellular hydrogen peroxide diffuse or act locally? Antioxid. Redox Signal. 14, 1-7. https://doi.org/10.1089/ars.2010.3539
  45. Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. https://doi.org/10.1002/prot.22936
  46. Netto, L.E.S., Chae, H.Z., Kang, S.W., Rhee, S.G., and Stadtman, E.R. (1996). Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J. Biol. Chem. 271, 15315-15321. https://doi.org/10.1074/jbc.271.26.15315
  47. Netto, L.E.S., Oliveira, M.A., Tairum-Jr, C., and da Silva Neto, J.F. (2015). Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic. Res. 16, 1-99.
  48. Nystrom, T., Yang, J., and Molin, M. (2012). Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes Dev. 26, 2001-2008. https://doi.org/10.1101/gad.200006.112
  49. Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E.S., and Augusto, O. (2007). Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42, 326-334. https://doi.org/10.1016/j.freeradbiomed.2006.10.042
  50. Oliveira, M.A., Discola, K.F., Alves, S. V., Medrano, F. J., Guimaraes, B.G., and Netto, L.E.S. (2010). Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. Biochemistry 49, 3317-3326. https://doi.org/10.1021/bi901962p
  51. Palde, P.B., and Carroll, K.S. (2015). A universal entropy-driven mechanism for thioredoxin-target recognition. Proc. Natl. Acad. Sci. USA 112, 7960-7965. https://doi.org/10.1073/pnas.1504376112
  52. Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., and Poole, L.B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583-10592. https://doi.org/10.1021/bi050448i
  53. Parsons, Z.D., and Gates, K.S. (2013). Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases. Biochemistry 52, 6412-6423. https://doi.org/10.1021/bi400451m
  54. Paulsen, C.E., Truong, T.H., Garcia, F.J., Homann, A., Gupta, V., Leonard, S.E., and Carrol, K.S. (2012). Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57-64. https://doi.org/10.1038/nchembio.736
  55. Pedroso, N., Matias, A.C., Cyrne, L., Antunes, F., Borges, C., Malho, R., de Almeida, R.F.M., Herrero, E., Marinho, H.S. (2009). Modulation of plasma membrane lipid profile and microdomains by $H_2O_2$ in Saccharomyces cerevisiae. Free Radic. Biol. Med. 46, 289-298. https://doi.org/10.1016/j.freeradbiomed.2008.10.039
  56. Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances $H_2O_2$ sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156-163. https://doi.org/10.1038/nchembio.1720
  57. Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C. (2007). The high reactivity of peroxiredoxin 2 with $H_2O_2$ is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885-11892. https://doi.org/10.1074/jbc.M700339200
  58. Peskin, A. V., Pace, P.E., Behring, J.B., Paton, L. N., Soethoudt, M., Bachschmid, M.M., and Winterbourn, C.C. (2016). Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J. Biol. Chem. [Epub ahead of print]
  59. Rawat, S.J., Creasy, C.L., Peterson, J.R., and Chernoff, J. (2013). The tumor suppressor Mst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin-1 protein. J. Biol. Chem. 288, 8762-8771. https://doi.org/10.1074/jbc.M112.414524
  60. Ragu, S., Dardalhon, M., Sharma, S., Iraqui, I, Buhagiar-Labarchede, G., Grondin, V., Kienda, G., Vernis, L, Chanet, R., Kolodner, R.D., et al. (2014). Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. PLoS One 9, e108123. https://doi.org/10.1371/journal.pone.0108123
  61. Rhee, S. G., and Woo, H. A. (2011) Multiple functions of peroxiredoxins:peroxidases, sensors and regulators of the intracellular messenger $H_2O_2$, and protein chaperones. Antioxid. Redox Signal. 15, 781-794. https://doi.org/10.1089/ars.2010.3393
  62. Rhee, S.G., Woo, H.A., Kil, I.S., and Bae, S.H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides J. Biol. Chem. 287, 4403-4410. https://doi.org/10.1074/jbc.R111.283432
  63. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK). EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
  64. Schroder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., Kruse, C., Luedike, P., Michaelis, U.R., Weissmann, N., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res. 110, 1217-1225. https://doi.org/10.1161/CIRCRESAHA.112.267054
  65. Sies, H. (2014). Role of metabolic $H_2O_2$ generation: redox signaling and oxidative stress. J. Biol. Chem. 289, 8735-8741. https://doi.org/10.1074/jbc.R113.544635
  66. Seidler, N.W. (2013). GAPDH: Biological Properties and Diversity. Vol. 985 (Springer).
  67. Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for $H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695
  68. Tachibana, T., Okazaki, S., Murayama, A., Naganuma, A., Nomoto, A., and Kuge, S. (2009). A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction sensitive disulfide bonds and reveals a low level of transcriptional activation. J. Biol. Chem. 284, 4464-4472. https://doi.org/10.1074/jbc.M807583200
  69. Tairum Jr., C.A., de Oliveira, M.A., Horta, B.B., Zara, F.J., and Netto, L.E.S. (2012). Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J. Mol. Biol. 424, 28-41. https://doi.org/10.1016/j.jmb.2012.09.008
  70. Tanner, J.J., Parsons, Z.D., Cummings, A.H., Zhou, H., and Gates, K.S. (2011). Redox regulation of protein tyrosine phosphatases:structural and chemical aspects. Antioxid. Redox Signal. 15, 77-97. https://doi.org/10.1089/ars.2010.3611
  71. Toledo, J.C., Audi, R., Ogusucu, R., Monteiro, G., Netto, L.E.S., and Augusto, O. (2011). Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics. Free Radic. Biol. Med. 50, 1032-1038. https://doi.org/10.1016/j.freeradbiomed.2011.02.020
  72. Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., and Radi, R. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 467, 95-106. https://doi.org/10.1016/j.abb.2007.08.008
  73. Turner-Ivey, B., Manevich, Y., Schulte, J., Kistner-Griffin, E., Jezierska-Drutel, A., Liu, Y., and Neumann, C.A. (2013). Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer. Oncogene 32, 5302-5314. https://doi.org/10.1038/onc.2012.624
  74. Veal, E.A., Ross, S.J., Malakasi, P., Peacock, E., and Morgan, B.A. (2003). Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278, 30896-30904. https://doi.org/10.1074/jbc.M303542200
  75. Watson, W.H., Pohl, J., Montfort, W.R., Stuchlik, O., Reed, M.S., Powis, G., and Jones, D.P. (2003). Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J. Biol. Chem. 278, 33408-33415. https://doi.org/10.1074/jbc.M211107200
  76. Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278-286. https://doi.org/10.1038/nchembio.85
  77. Winterbourn, C.C., and Hampton, M.B. (2008). Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549-561. https://doi.org/10.1016/j.freeradbiomed.2008.05.004
  78. Winterbourn, C.C., and Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322-328. https://doi.org/10.1016/S0891-5849(99)00051-9
  79. Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized $H_2O_2$ accumulation for cell signaling. Cell 140, 517-528. https://doi.org/10.1016/j.cell.2010.01.009
  80. Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling .Science 300, 650-653. https://doi.org/10.1126/science.1080405
  81. Ying, J., Clavreul, N., Sethuraman, M., Adachi, T., and Cohen, R.A. (2007). Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic. Biol. Med 43, 1099-1108. https://doi.org/10.1016/j.freeradbiomed.2007.07.014

Cited by

  1. New Challenges to Study Heterogeneity in Cancer Redox Metabolism vol.5, 2017, https://doi.org/10.3389/fcell.2017.00065
  2. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation vol.10, 2016, https://doi.org/10.1016/j.redox.2016.10.006
  3. Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast vol.12, 2017, https://doi.org/10.1016/j.redox.2017.01.025
  4. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? 2018, https://doi.org/10.1089/ars.2017.7214
  5. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage vol.8, 2017, https://doi.org/10.3389/fphys.2017.00439
  6. The Role of Peroxiredoxins in the Transduction of H2O2 Signals 2018, https://doi.org/10.1089/ars.2017.7167
  7. Peroxiredoxin 1 - an antioxidant enzyme in cancer vol.21, pp.1, 2017, https://doi.org/10.1111/jcmm.12955
  8. Quantitative biology of hydrogen peroxide signaling vol.13, 2017, https://doi.org/10.1016/j.redox.2017.04.039
  9. Disulfide Stress Targets Modulators of Excitotoxicity in Otherwise Healthy Brains vol.41, pp.10, 2016, https://doi.org/10.1007/s11064-016-1991-0
  10. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins vol.13, pp.2, 2017, https://doi.org/10.1371/journal.pcbi.1005284
  11. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate vol.617, 2017, https://doi.org/10.1016/j.abb.2016.09.011
  12. Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging vol.1863, pp.1, 2017, https://doi.org/10.1016/j.bbadis.2016.10.017
  13. Cardiac Cell Senescence and Redox Signaling vol.4, 2017, https://doi.org/10.3389/fcvm.2017.00038
  14. Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
  15. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis 2017, https://doi.org/10.1089/ars.2016.6922
  16. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs 2017, https://doi.org/10.1089/ars.2017.7162
  17. Novel insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F 2017, https://doi.org/10.1016/j.bbagen.2017.09.011
  18. Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system vol.256, 2017, https://doi.org/10.1016/j.jconrel.2017.04.023
  19. Redox stress and signaling during vertebrate embryonic development: Regulation and responses 2017, https://doi.org/10.1016/j.semcdb.2017.09.019
  20. Peroxisomes as Modulators of Cellular Protein Thiol Oxidation: A New Model System 2017, https://doi.org/10.1089/ars.2017.6997
  21. The Peroxisome-Mitochondria Connection: How and Why? vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061126
  22. Catalytic Thr or Ser Residue Modulates Structural Switches in 2-Cys Peroxiredoxin by Distinct Mechanisms vol.6, pp.1, 2016, https://doi.org/10.1038/srep33133
  23. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling vol.12, 2017, https://doi.org/10.1016/j.redox.2017.01.003
  24. Mitochondrial ROS versus ER ROS: Which Comes First in Myocardial Calcium Dysregulation? vol.3, 2016, https://doi.org/10.3389/fcvm.2016.00036
  25. PRDX2 in Myocyte Hypertrophy and Survival is Mediated by TLR4 in Acute Infarcted Myocardium vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-06718-7
  26. A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation vol.14, pp.2, 2017, https://doi.org/10.1038/nchembio.2536
  27. Cellular Timekeeping: It’s Redox o’Clock vol.10, pp.5, 2017, https://doi.org/10.1101/cshperspect.a027698
  28. Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide vol.45, pp.2, 2018, https://doi.org/10.1071/FP16322
  29. Hydrogen Peroxide and Redox Regulation of Developments vol.7, pp.11, 2018, https://doi.org/10.3390/antiox7110159
  30. Piecing Together How Peroxiredoxins Maintain Genomic Stability vol.7, pp.12, 2018, https://doi.org/10.3390/antiox7120177
  31. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells vol.7, pp.10, 2018, https://doi.org/10.3390/cells7100156
  32. Endoplasmic reticulum (ER) stress–induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant vol.293, pp.31, 2018, https://doi.org/10.1074/jbc.RA118.001824
  33. Cigarette Smoking Aggravates the Activity of Periodontal Disease by Disrupting Redox Homeostasis- An Observational Study vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29163-6
  34. Redox Signaling from and to Peroxisomes: Progress, Challenges, and Prospects pp.1557-7716, 2018, https://doi.org/10.1089/ars.2018.7515
  35. Why does chemotherapy stop affecting the cells of ovarian and breast tumors? vol.14, pp.12, 2018, https://doi.org/10.2217/fon-2018-0001
  36. Expression of MyoD, insulin like growth factor binding protein, thioredoxin and p27 in secondarily overacting inferior oblique muscles with superior oblique palsy vol.18, pp.1, 2018, https://doi.org/10.1186/s12886-018-0793-3
  37. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications vol.52, pp.5, 2018, https://doi.org/10.1080/10715762.2018.1457217
  38. KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24900-3
  39. Adipose oxidative stress and protein carbonylation vol.294, pp.4, 2018, https://doi.org/10.1074/jbc.R118.003214
  40. A Cross-Sectional Study of Endogenous Antioxidants and Patterns of Dental Visits of Periodontitis Patients vol.16, pp.2, 2019, https://doi.org/10.3390/ijerph16020180
  41. Redox Regulation of Inflammatory Processes Is Enzymatically Controlled vol.2017, pp.None, 2016, https://doi.org/10.1155/2017/8459402
  42. Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity vol.474, pp.8, 2016, https://doi.org/10.1042/bcj20160851
  43. Design of Peptide-Based Probes for the Microscale Detection of Reactive Oxygen Species vol.89, pp.20, 2016, https://doi.org/10.1021/acs.analchem.7b02544
  44. Innate immune evasion strategies against Cryptococcal meningitis caused by Cryptococcus neoformans vol.14, pp.6, 2016, https://doi.org/10.3892/etm.2017.5220
  45. A functional connection between dyskerin and energy metabolism vol.14, pp.None, 2018, https://doi.org/10.1016/j.redox.2017.11.003
  46. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice vol.15, pp.None, 2018, https://doi.org/10.1016/j.redox.2017.11.014
  47. Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress vol.28, pp.1, 2016, https://doi.org/10.4014/jmb.1707.07024
  48. Monitoring H2O2 inside Aspergillus fumigatus with an Integrated Microelectrode: The Role of Peroxiredoxin Protein Prx1 vol.90, pp.4, 2016, https://doi.org/10.1021/acs.analchem.7b04074
  49. Dynamic redox balance directs the oocyte-to-embryo transition via developmentally controlled reactive cysteine changes vol.115, pp.34, 2016, https://doi.org/10.1073/pnas.1807918115
  50. The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-49841-3
  51. Upregulation of Peroxiredoxin 3 Protects Afg3l 2-KO Cortical Neurons In Vitro from Oxidative Stress: A Paradigm for Neuronal Cell Survival under Neurodegenerative Conditions vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/4721950
  52. Quantitative Proteomics Reveal Peroxiredoxin Perturbation Upon Persistent Lymphocytic Choriomeningitis Virus Infection in Human Cells vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.02438
  53. Role of Cytosolic 2-Cys Prx1 and Prx2 in Redox Signaling vol.8, pp.6, 2016, https://doi.org/10.3390/antiox8060169
  54. Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease vol.20, pp.15, 2016, https://doi.org/10.3390/ijms20153673
  55. Antioxidants & bronchopulmonary dysplasia: Beating the system or beating a dead horse? vol.142, pp.None, 2016, https://doi.org/10.1016/j.freeradbiomed.2019.01.038
  56. ERBB3 and IGF1R Signaling Are Required for Nrf2-Dependent Growth in KEAP1-Mutant Lung Cancer vol.79, pp.19, 2016, https://doi.org/10.1158/0008-5472.can-18-2086
  57. Thiol-Redox Regulation in Lung Development and Vascular Remodeling vol.31, pp.12, 2019, https://doi.org/10.1089/ars.2018.7712
  58. A key metabolic integrator, coenzyme A, modulates the activity of peroxiredoxin 5 via covalent modification vol.461, pp.1, 2016, https://doi.org/10.1007/s11010-019-03593-w
  59. The Effect of Human Umbilical Cord Mesenchymal Stromal Cells in Protection of Dopaminergic Neurons from Apoptosis by Reducing Oxidative Stress in the Early Stage of a 6-OHDA-Induced Parkinson’s vol.28, pp.1, 2019, https://doi.org/10.1177/0963689719891134
  60. Associations between the phenotype and genotype of MnSOD and catalase in periodontal disease vol.19, pp.1, 2016, https://doi.org/10.1186/s12903-019-0877-3
  61. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism vol.31, pp.18, 2019, https://doi.org/10.1089/ars.2018.7678
  62. Minimizing an Electron Flow to Molecular Oxygen in Photosynthetic Electron Transfer Chain: An Evolutionary View vol.11, pp.None, 2016, https://doi.org/10.3389/fpls.2020.00211
  63. Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization vol.85, pp.suppl1, 2016, https://doi.org/10.1134/s0006297920140047
  64. Proteomic profiling of proteins in the dorsal horn of the spinal cord in dairy cows with chronic lameness vol.15, pp.1, 2016, https://doi.org/10.1371/journal.pone.0228134
  65. Deciphering the Role of Multiple Thioredoxin Fold Proteins of Leptospirillum sp. in Oxidative Stress Tolerance vol.21, pp.5, 2016, https://doi.org/10.3390/ijms21051880
  66. Antioxidant Enzymes and Male Fertility: Lessons from Knockout Models vol.32, pp.8, 2016, https://doi.org/10.1089/ars.2019.7985
  67. Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch vol.32, pp.10, 2016, https://doi.org/10.1089/ars.2019.7962
  68. Crystal structure of Akkermansia muciniphila peroxiredoxin reveals a novel regulatory mechanism of typical 2‐Cys Prxs by a distinct loop vol.594, pp.10, 2020, https://doi.org/10.1002/1873-3468.13753
  69. Thiol Peroxidases as Major Regulators of Intracellular Levels of Peroxynitrite in Live Saccharomyces cerevisiae Cells vol.9, pp.5, 2016, https://doi.org/10.3390/antiox9050434
  70. Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention vol.210, pp.None, 2020, https://doi.org/10.1016/j.pharmthera.2020.107520
  71. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway vol.55, pp.3, 2020, https://doi.org/10.1111/jre.12722
  72. Autophagy, One of the Main Steps in Periodontitis Pathogenesis and Evolution vol.25, pp.18, 2016, https://doi.org/10.3390/molecules25184338
  73. Proteomics and Lipidomics Investigations to Decipher the Behavior of Willaertia magna C2c Maky According to Different Culture Modes vol.8, pp.11, 2016, https://doi.org/10.3390/microorganisms8111791
  74. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology vol.21, pp.23, 2016, https://doi.org/10.3390/ijms21239317
  75. Protective Role of Nrf2 in Renal Disease vol.10, pp.1, 2016, https://doi.org/10.3390/antiox10010039
  76. Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6639199
  77. Synthesis of PDA-Mediated Magnetic Bimetallic Nanozyme and Its Application in Immunochromatographic Assay vol.13, pp.1, 2016, https://doi.org/10.1021/acsami.0c17957
  78. PRDX2 Protects Against Atherosclerosis by Regulating the Phenotype and Function of the Vascular Smooth Muscle Cell vol.8, pp.None, 2016, https://doi.org/10.3389/fcvm.2021.624796
  79. The antioxidant function of Sco proteins depends on a critical surface-exposed residue vol.1865, pp.2, 2021, https://doi.org/10.1016/j.bbagen.2020.129781
  80. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications vol.11, pp.2, 2021, https://doi.org/10.3390/bios11020030
  81. Effect of manganese supplementation on the carcass traits, meat quality, intramuscular fat, and tissue manganese accumulation of Pekin duck vol.100, pp.5, 2016, https://doi.org/10.1016/j.psj.2021.101064
  82. Comprehensive Structure-Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C-H Functionalization vol.7, pp.5, 2016, https://doi.org/10.1021/acscentsci.0c01624
  83. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond vol.35, pp.12, 2021, https://doi.org/10.1089/ars.2020.8176
  84. Lipopolysaccharide exacerbates chronic restraint stress-induced neurobehavioral deficits: Mechanisms by redox imbalance, ASK1-related apoptosis, autophagic dysregulation vol.144, pp.None, 2021, https://doi.org/10.1016/j.jpsychires.2021.10.021
  85. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-22561-x
  86. Evidence of myomiR regulation of the pentose phosphate pathway during mechanical load‐induced hypertrophy vol.9, pp.23, 2021, https://doi.org/10.14814/phy2.15137
  87. Effect of 2-Cys Peroxiredoxins Inhibition on Redox Modifications of Bull Sperm Proteins vol.22, pp.23, 2016, https://doi.org/10.3390/ijms222312888
  88. Mito‐targeted antioxidant prevents cardiovascular remodelling in spontaneously hypertensive rat by modulation of energy metabolism vol.49, pp.1, 2022, https://doi.org/10.1111/1440-1681.13585
  89. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders vol.114, pp.None, 2022, https://doi.org/10.1016/j.pnpbp.2021.110481