References
- Abbas, K., Breton, J., Picot, C.R., Quesniaux, V., Bouton, C., and Drapier, J.-C. (2009). Signaling events leading to peroxiredoxin 5 up-regulation in immunostimulated macrophages. Free Radic. Biol. Med. 47, 794-802. https://doi.org/10.1016/j.freeradbiomed.2009.06.018
- Adimora, N.J., Jones, D.P., and Kemp, M.L. (2010). A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid. Redox Signal. 13, 731-743. https://doi.org/10.1089/ars.2009.2968
- Ahn, H.M., Lee, K.S., Lee, D.S., and Yu, K. (2012). JNK/FOXO mediated PeroxiredoxinV expression regulates redox homeostasis during Drosophila melanogaster gut infection. Dev. Comp. Immunol. 38, 466-473. https://doi.org/10.1016/j.dci.2012.07.002
- Bast, A., Erttmann, S.F., Walther, R., and Steinmetz, I. (2010). Influence of iNOS and COX on peroxiredoxin gene expression in primary macrophages. Free Radic. Biol. Med. 49, 1881-1891. https://doi.org/10.1016/j.freeradbiomed.2010.09.015
- Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994). Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
- Chatterjee, S., Feinstein, S.I., Dodia, C., Sorokina, E., Lien, Y.-C., Nguyen, S., Debolt, K., Speicher, D., and Fisher, A.B. (2011). Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J. Biol. Chem. 286, 11696-11706. https://doi.org/10.1074/jbc.M110.206623
- Chen, H., Yin, Y., Feng, E., Li, Y., Xie, X., and Wang, Z. (2014). Thioredoxin peroxidase gene is involved in resistance to biocontrol fungus Nomuraea rileyi in Spodoptera litura: gene cloning, expression, localization and function. Dev. Comp. Immunol. 44, 76-85. https://doi.org/10.1016/j.dci.2013.11.012
- Choi, H.-I., Chung, K.-J., Yang, H.-Y., Ren, L., Sohn, S., Kim, P.-R., Kook, M.-S., Choy, H.E., and Lee, T.-H. (2013). Peroxiredoxin V selectively regulates IL-6 production by modulating the Jak2-Stat5 pathway. Free Radic. Biol. Med. 65, 270-279. https://doi.org/10.1016/j.freeradbiomed.2013.06.038
- Cox, A.G., Winterbourn, C.C. and Hampton, M.B. (2010). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313-325. https://doi.org/10.1042/BJ20091541
-
Desaint, S., Luriau, S., Aude, J.C., Rousselet, G., and Toledano, M.B. (2004). Mammalian antioxidant defenses are not inducible by
$H_2O_2$ . J. Biol. Chem. 279, 31157-31163. https://doi.org/10.1074/jbc.M401888200 - Diet, A., Abbas, K., Bouton, C., Guillon, B., Tomasello, F., Fourquet, S., Toledano, M.B., and Drapier, J.-C. (2007). Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J. Biol. Chem. 282, 36199-36205. https://doi.org/10.1074/jbc.M706420200
- Ding, Y., Yamada, S., Wang, K.-Y., Shimajiri, S., Guo, X., Tanimoto, A., Murata, Y., Kitajima, S., Watanabe, T., Izumi, H., et al. (2010). Overexpression of peroxiredoxin 4 protects against high-dose streptozotocin-induced diabetes by suppressing oxidative stress and cytokines in transgenic mice. Antioxid. Redox Signal. 13, 1477-1490. https://doi.org/10.1089/ars.2010.3137
- Donnelly, S., O'Neill, S.M., Sekiya, M., Mulcahy, G., and Dalton, J.P. (2005). Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect. Immun. 73, 166-173. https://doi.org/10.1128/IAI.73.1.166-173.2005
- Donnelly, S., Stack, C.M., O'Neill, S.M., Sayed, A.A., Williams, D.L., and Dalton, J.P. (2008). Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. FASEB J. 22, 4022-4032. https://doi.org/10.1096/fj.08-106278
- Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434-450. https://doi.org/10.1021/tx100413v
- Furuta, T., Imajo-Ohmi, S., Fukuda, H., Kano, S., Miyake, K., and Watanabe, N. (2008). Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur. J. Immunol. 38, 1341-1350. https://doi.org/10.1002/eji.200738059
- Genard, B., Miner, P., Nicolas, J.L., Moraga, D., Boudry, P., Pernet, F., and Tremblay, R. (2013). Integrative study of physiological changes associated with bacterial infection in Pacific oyster larvae. PLoS One 8, e64534. https://doi.org/10.1371/journal.pone.0064534
- Gretes, M.C., Poole, L.B., and Karplus, P.A. (2012). Peroxiredoxins in parasites. Antioxid. Redox Signal. 17, 608-633. https://doi.org/10.1089/ars.2011.4404
- Hall, A., Parsonage, D., Poole, L.B., and Karplus, P.A. (2010). Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 402, 194-209. https://doi.org/10.1016/j.jmb.2010.07.022
- Hanschmann, E.-M., Godoy, J.R., Berndt, C., Hudemann, C., and Lillig, H.C. (2013). Thioredoxins, glutaredoxins, and peroxiredoxins-Molecular mechanisms and health significance:from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539-1605. https://doi.org/10.1089/ars.2012.4599
- Hofmann, B., Hecht, H.-J. and Flohe, L. (2002). Peroxiredoxins. Biol. Chem. 383, 347-364.
- Ishii, T. (2015). Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic. Biol. Med. 88, 189-198. https://doi.org/10.1016/j.freeradbiomed.2015.04.034
- Ishii, T., Warabi, E., and Yanagawa, T. (2012). Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J. Clin. Biochem. Nutr., 50, 91-105. https://doi.org/10.3164/jcbn.11-109
- Kikuchi, N., Ishii, Y., Morishima, Y., Yageta, Y., Haraguchi, N., Yamadori, T., Masuko, H., Sakamoto, T., Yanagawa, T., Warabi, E., et al. (2011). Aggravation of bleomycin-induced pulmonary inflammation and fibrosis in mice lacking peroxiredoxin I. Am. J. Respir. Cell Mol. Biol. 45, 600-609. https://doi.org/10.1165/rcmb.2010-0137OC
- Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G. and Stadtman, E.R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a Thiol/Fe(III)/O2 mixedfunction oxidation system. J. Biol. Chem. 263, 4704-4711.
- Kim, S.-U., Hwang, C.N., Sun, H.-N., Jin, M.-H., Han, Y.-H., Lee, H., Kim, J.-M., Kim, S.-K., Yu, D.-Y., Lee, D.-S., et al. (2008). Peroxiredoxin I is an indicator of microglia activation and protects against hydrogen peroxide-mediated microglial death. Biol. Pharm. Bull. 31, 820-825. https://doi.org/10.1248/bpb.31.820
-
Kim, S.U., Park, Y.H., Min, J.S., Sun, H.N., Han, Y.H., Hua, J.M., Lee, T.H., Lee, S.R., Chang, K.T., Kang, S.W., et al. (2013). Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-
${\kappa}B$ -mediated iNOS induction and microglial activation. J. Neuroimmunol. 259, 26-36. https://doi.org/10.1016/j.jneuroim.2013.03.006 - Kinnula, V.L., Lehtonen, S., Kaarteenaho-Wiik, R., Lakari, E., Paakko, P., Kang, S.W., Rhee, S.G., and Soini, Y. (2002). Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 57, 157-164. https://doi.org/10.1136/thorax.57.2.157
- Knoops, B., Clippe, A., Bogard, C., Arsalane, K., Wattiez, R., Hermans, C., Duconseille, E., Falmagne, P., and Bernard, A. (1999). Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J. Biol. Chem. 274, 30451-30458. https://doi.org/10.1074/jbc.274.43.30451
- Knoops, B., Loumaye, E., and Van Der Eecken, V. (2007). Evolution of peroxiredoxins. Subcell. Biochem. 44, 27-40. https://doi.org/10.1007/978-1-4020-6051-9_2
- Leyens, G., Donnay, I., and Knoops, B. (2003). Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136, 943-955. https://doi.org/10.1016/S1096-4959(03)00290-2
- Li, L., Shoji, W., Takano, H., Nishimura, N., Aoki, Y., Takahashi, R., Goto, S., Kaifu, T., Takai, T., and Obinata, M. (2007). Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPSinduced oxidative stress. Biochem. Biophys. Res. Commun. 355, 715-721. https://doi.org/10.1016/j.bbrc.2007.02.022
- Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P., and Malik, A.B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126-1167. https://doi.org/10.1089/ars.2012.5149
- Mullen, L., Hanschmann, E.M., Lillig, C.H., Herzenberg, L.A., and Ghezzi, P. (2015). Cysteine oxidation targets peroxiredoxin 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion. Mol. Med. 21, 98-108. https://doi.org/10.1007/s00894-015-2638-9
- Nabeshima, A., Yamada, S., Guo, X., Tanimoto, A., Wang, K.Y., Shimajiri, S., Kimura, S., Tasaki, T., Noguchi, H., Kitada, S., et al. (2013). Peroxiredoxin 4 protects against nonalcoholic steatohepatitis and type 2 diabetes in a nongenetic mouse model. Antioxid. Redox Signal. 19, 1983-1998. https://doi.org/10.1089/ars.2012.4946
- Nathan, C., and Cunningham-Bussel, A. (2013). Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349-361. https://doi.org/10.1038/nri3423
- Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. https://doi.org/10.1002/prot.22936
- Newton, K., and Dixit, V.M. (2012). Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 4, a006049.
- Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., and Karplus, P.A. (2015). Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 40, 435-445. https://doi.org/10.1016/j.tibs.2015.05.001
- Portillo-Ledesma, S., Sardi, F., Manta, B., Tourn, M.V., Clippe, A., Knoops, B., Alvarez, B., Coitino, E.L., and Ferrer-Sueta, G. (2014). Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine. Biochemistry 53, 6113-6125. https://doi.org/10.1021/bi500389m
- Radyuk, S.N., Michalak, K., Klichko, V.I., Benes, J., Rebrin, I., Sohal, R.S., and Orr, W.C. (2009). Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in Drosophila. Biochem. J. 419, 437-445. https://doi.org/10.1042/BJ20082003
- Radyuk, S.N., Michalak, K., Klichko, V.I., Benes, J., and Orr, W.C. (2010). Peroxiredoxin 5 modulates immune response in Drosophila. Biochim. Biophys. Acta 1800, 1153-1163. https://doi.org/10.1016/j.bbagen.2010.06.010
- Ren, L., Sun, Y., Wang, R., and Xu, T. (2014). Gene structure, immune response and evolution: comparative analysis of three 2-Cys peroxiredoxin members of miiuy croaker, Miichthys miiuy. Fish Shellfish Immunol. 36, 409-416. https://doi.org/10.1016/j.fsi.2013.12.014
-
Rhee, S., and Woo, H. (2011). Multiple functions of peroxiredoxins:peroxidases, sensors and regulators of the intracellular messenger
$H_2O_2$ , and protein chaperones. Antioxid. Redox Signal. 15, 781-794. https://doi.org/10.1089/ars.2010.3393 - Rhee, S.G., Chae, H.Z., and Kim, K. (2005a). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543-1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
- Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.-S., Yang, K.-S., and Woo, H.A. (2005b). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17, 183-189. https://doi.org/10.1016/j.ceb.2005.02.004
- Riddell, J.R., Wang, X.-Y., Minderman, H., and Gollnick, S.O. (2010). Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J. Immunol. 184, 1022-1030. https://doi.org/10.4049/jimmunol.0901945
- Robinson, M.W., Hutchinson, A.T., Dalton, J.P., and Donnelly, S. (2010a). Peroxiredoxin: A central player in immune modulation. Parasite Immunol. 32, 305-313. https://doi.org/10.1111/j.1365-3024.2010.01201.x
- Robinson, M.W., Hutchinson, A.T., Donnelly, S., and Dalton, J.P. (2010b). Worm secretory molecules are causing alarm. Trends Parasitol. 26, 371-372. https://doi.org/10.1016/j.pt.2010.05.004
- Royet, J., Reichhart, J.M., and Hoffmann, J.A. (2005). Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11-17. https://doi.org/10.1016/j.coi.2004.12.002
- Salzano, S., Checconi, P., Hanschmann, E.-M., Lillig, C.H., Bowler, L.D., Chan, P., Vaudry, D., Mengozzi, M., Coppo, L., Sacre, S., et al. (2014). Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA. 111, 12157-12162. https://doi.org/10.1073/pnas.1401712111
- Seo, M.S., Kang, S.W., Kim, K., Baines, I.C., Lee, T.H., and Rhee, S.G. (2000). Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275, 20346-20354. https://doi.org/10.1074/jbc.M001943200
- Shau, H., Gupta, R.K., and Golub, S.H. (1993). Identification of a natural killer enhancing factor (NKEF) from human erythroid cells. Cell. Immunol. 147, 1-11. https://doi.org/10.1006/cimm.1993.1043
- Shichita, T., Hasegawa, E., Kimura, A., Morita, R., Sakaguchi, R., Takada, I., Sekiya, T., Ooboshi, H., Kitazono, T., Yanagawa, T., et al. (2012). Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911-917. https://doi.org/10.1038/nm.2749
-
Sies, H. (2014). Role of Metabolic
$H_2O_2$ Generation: redox signaling and oxidative stress. J. Biol. Chem. 289, 8735-8741. https://doi.org/10.1074/jbc.R113.544635 -
Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for
$H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695 - Sun, H.N., Kim, S.U., Huang, S.M., Kim, J.M., Park, Y.H., Kim, S.H., Yang, H.Y., Chung, K.J., Lee, T.H., Choi, H.S., et al. (2010). Microglial peroxiredoxin v acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J. Neurochem. 114, 39-50.
- Valero, Y., Martinez-Morcillo, F.J., Esteban, M.A., Chaves-Pozo, E., and Cuesta, A. (2015). Fish peroxiredoxins and their role in immunity. Biology 4, 860-880. https://doi.org/10.3390/biology4040860
- Wang, M.-X., Wei, A., Yuan, J., Trickett, A., Knoops, B., and Murrell, G.A. (2002). Expression and regulation of peroxiredoxin 5 in human osteoarthritis. FEBS Lett. 531, 359-362. https://doi.org/10.1016/S0014-5793(02)03511-1
-
Woo, H.A, Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized
$H_2O_2$ accumulation for cell signaling. Cell. 140, 517-528. https://doi.org/10.1016/j.cell.2010.01.009 - Wood, Z. a, Schroder, E., Robin Harris, J. and Poole, L.B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
- Yang, C.-S., Lee, D.-S., Song, C.-H., An, S.-J., Li, S., Kim, J.-M., Kim, C.S., Yoo, D.G., Jeon, B.H., Yang, H.-Y., et al. (2007). Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J. Exp. Med. 204, 583-594. https://doi.org/10.1084/jem.20061849
- Yu, S.H., Mu, Y.N., Ao, J.Q., and Chen, X.H. (2010). Peroxiredoxin IV regulates pro-inflammatory responses in large yellow croaker (Pseudosciaena crocea) and protects against bacterial challenge. J. Proteome Res. 9, 1424-1436. https://doi.org/10.1021/pr900961x
- Yun, H., Park, K., Kim, E., and Hong, J.T. (2015). PRDX6 controls multiple sclerosis by suppressing inflammation and blood brain barrier disruption. Oncotarget 6, 20875-20884. https://doi.org/10.18632/oncotarget.5205
- Zhang, L., and Lu, Z. (2015). Expression, purification and characterization of an atypical 2-Cys peroxiredoxin from the silkworm, Bombyx mori. Insect Mol. Biol. 24, 203-212. https://doi.org/10.1111/imb.12149
Cited by
- The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals vol.51, pp.2, 2017, https://doi.org/10.1080/10715762.2017.1289377
- Cellular mechanisms of peroxynitrite-induced neuronal death vol.133, 2017, https://doi.org/10.1016/j.brainresbull.2017.05.008
- Formation and processing of DNA damage substrates for the hNEIL enzymes vol.107, 2017, https://doi.org/10.1016/j.freeradbiomed.2016.11.030
- Peroxisomes as Modulators of Cellular Protein Thiol Oxidation: A New Model System 2017, https://doi.org/10.1089/ars.2017.6997
- PRDX2 in Myocyte Hypertrophy and Survival is Mediated by TLR4 in Acute Infarcted Myocardium vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-06718-7
- Expression of the Antioxidative Enzyme Peroxiredoxin 2 in Multiple Sclerosis Lesions in Relation to Inflammation vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040760
- Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
- Identification of MicroRNAs Involved in Growth Arrest and Apoptosis in Hydrogen Peroxide-Treated Human Hepatocellular Carcinoma Cell Line HepG2 vol.2016, 2016, https://doi.org/10.1155/2016/7530853
- Placental Proteomics Provides Insights into Pathophysiology of Pre-Eclampsia and Predicts Possible Markers in Plasma vol.16, pp.2, 2017, https://doi.org/10.1021/acs.jproteome.6b00955
- The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE vol.52, pp.67, 2016, https://doi.org/10.1039/C6CC02645A
- Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging vol.1863, pp.1, 2017, https://doi.org/10.1016/j.bbadis.2016.10.017
- Control and dysregulation of redox signalling in the gastrointestinal tract pp.1759-5053, 2018, https://doi.org/10.1038/s41575-018-0079-5
- The Role of Peroxiredoxins in Various Diseases Caused by Oxidative Stress and the Prospects of Using Exogenous Peroxiredoxins vol.63, pp.4, 2018, https://doi.org/10.1134/S0006350918040164
- cytosolic tryparedoxin peroxidase in human natural infection vol.155, pp.3, 2018, https://doi.org/10.1111/imm.12979
- Detection of peroxiredoxin-like protein in Antarctic sea urchin (Sterechinus neumayeri) under heat stress and induced with pathogen-associated molecular pattern from Vibrio anguillarum vol.41, pp.10, 2018, https://doi.org/10.1007/s00300-018-2346-x
- The Multifaceted Impact of Peroxiredoxins on Aging and Disease vol.29, pp.13, 2018, https://doi.org/10.1089/ars.2017.7452
- Proteomics and Toxicity Analysis of Spinal-Cord Primary Cultures upon Hydrogen Sulfide Treatment vol.7, pp.7, 2018, https://doi.org/10.3390/antiox7070087
- Redox Signaling from and to Peroxisomes: Progress, Challenges, and Prospects pp.1557-7716, 2018, https://doi.org/10.1089/ars.2018.7515
- Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs vol.8, pp.1664-3224, 2017, https://doi.org/10.3389/fimmu.2017.01977
- Identification of protein clusters predictive of tumor response in rectal cancer patients receiving neoadjuvant chemo-radiotherapy vol.8, pp.17, 2016, https://doi.org/10.18632/oncotarget.16053
- Emerging Therapeutic Targets in Oncologic Photodynamic Therapy vol.24, pp.44, 2016, https://doi.org/10.2174/1381612825666190122163832
- Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway vol.4, pp.None, 2018, https://doi.org/10.1038/s41420-018-0050-9
- 홍어 콜라겐 펩타이드의 산화적 스트레스 완화를 통한 항염증효과 vol.35, pp.4, 2016, https://doi.org/10.12925/jkocs.2018.35.4.1369
- Ethanolic leaf extract from Strophanthus gratus (Hook.) Franch. (Apocynaceae) exhibits anti-inflammatory and antioxidant activities vol.5, pp.1, 2016, https://doi.org/10.1080/23312025.2019.1710431
- Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease vol.20, pp.15, 2016, https://doi.org/10.3390/ijms20153673
- Characterization of extracellular redox enzyme concentrations in response to exercise in humans vol.127, pp.3, 2016, https://doi.org/10.1152/japplphysiol.00340.2019
- Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols : Focus Review vol.119, pp.19, 2016, https://doi.org/10.1021/acs.chemrev.9b00371
- The overexpression of peroxiredoxin-4 affects the progression of idiopathic pulmonary fibrosis vol.19, pp.1, 2016, https://doi.org/10.1186/s12890-019-1032-2
- Peroxiredoxins and Immune Infiltrations in Colon Adenocarcinoma: Their Negative Correlations and Clinical Significances, an In Silico Analysis vol.11, pp.11, 2016, https://doi.org/10.7150/jca.38057
- A Novel Thioredoxin-Dependent Peroxiredoxin (TPx-Q) Plays an Important Role in Defense Against Oxidative Stress and Is a Possible Drug Target in Babesia microti vol.7, pp.None, 2016, https://doi.org/10.3389/fvets.2020.00076
- The C . elegans CHP1 homolog, pbo-1 , functions in innate immunity by regulating the pH of the intestinal lumen vol.16, pp.1, 2020, https://doi.org/10.1371/journal.ppat.1008134
- Prx2 (Peroxiredoxin 2) as a Cause of Hydrocephalus After Intraventricular Hemorrhage vol.51, pp.5, 2020, https://doi.org/10.1161/strokeaha.119.028672
- Ablation of Peroxiredoxin V Exacerbates Ischemia/Reperfusion-Induced Kidney Injury in Mice vol.9, pp.8, 2016, https://doi.org/10.3390/antiox9080769
- A novel peroxiredoxin from the antagonistic endophytic bacterium Enterobacter sp. V1 contributes to cotton resistance against Verticillium dahliae vol.454, pp.1, 2016, https://doi.org/10.1007/s11104-020-04661-7
- Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-71015-9
- Global Proteomic Profiling of Piscirickettsia salmonis and Salmon Macrophage-Like Cells during Intracellular Infection vol.8, pp.12, 2020, https://doi.org/10.3390/microorganisms8121845
- A Complex Proteomic Response of the Parasitic Nematode Anisakis simplex s.s. to Escherichia coli Lipopolysaccharide vol.20, pp.None, 2016, https://doi.org/10.1016/j.mcpro.2021.100166
- Acute Running and Coronary Heart Disease Risk Markers in Male Cigarette Smokers and Nonsmokers: A Randomized Crossover Trial vol.53, pp.5, 2021, https://doi.org/10.1249/mss.0000000000002560
- Redox Enzymes of the Thioredoxin Family as Potential and Novel Markers in Pemphigus vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6672693
- Methylome Patterns of Cattle Adaptation to Heat Stress vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.633132
- Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS) vol.14, pp.None, 2016, https://doi.org/10.3389/fncel.2020.581950
- Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.623795
- Multi–cell type gene coexpression network analysis reveals coordinated interferon response and cross–cell type correlations in systemic lupus erythematosus vol.31, pp.4, 2021, https://doi.org/10.1101/gr.265249.120
- Social modulation of ageing: mechanisms, ecology, evolution vol.376, pp.1823, 2021, https://doi.org/10.1098/rstb.2019.0738
- The cytosolic tryparedoxin peroxidase from Trypanosoma cruzi induces a pro‐inflammatory Th1 immune response in a peroxidatic cysteine‐dependent manner vol.163, pp.1, 2016, https://doi.org/10.1111/imm.13302
- Engineering Extracellular Vesicles Restore the Impaired Cellular Uptake and Attenuate Intervertebral Disc Degeneration vol.15, pp.9, 2021, https://doi.org/10.1021/acsnano.1c04514
- In vitro study of sodium butyrate on soyasaponin challenged intestinal epithelial cells of turbot (Scophthalmus maximus L.) refer to inflammation, apoptosis and antioxidant enzymes vol.2, pp.None, 2016, https://doi.org/10.1016/j.fsirep.2021.100031
- Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature vol.18, pp.1, 2016, https://doi.org/10.1186/s12014-021-09324-y
- The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus vol.22, pp.1, 2016, https://doi.org/10.1186/s12864-021-07988-2
- A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice vol.253, pp.None, 2016, https://doi.org/10.1016/j.jprot.2021.104464
- Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape vol.49, pp.None, 2016, https://doi.org/10.1016/j.redox.2021.102212