• Title/Summary/Keyword: SIMO

Search Result 79, Processing Time 0.026 seconds

SIMO-FTN Transmission for Next Generation Broadcasting Systems (차세대 방송 시스템을 위한 SIMO-FTN 전송 기법)

  • Jo, Bong-Gyun;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.252-253
    • /
    • 2014
  • 최근 채널 효율을 향상시키기 위하여 다중안테나(MIMO, multi-input multi-output) 기술이 연구되고 있다. 다중안테나 기술은 송 수신 안테나 개수를 증가시켜 수신 성능을 향상시키고 대역 효율을 향상시키지만 송신 안테나 개수를 늘려야만 대역 효율을 증가시킬 수 있으므로 기존 방송 시스템에 적용하기에는 비용이 많이 드는 단점이 있다. 이에 본 논문은 방송 시스템에 적합한 SIMO(single-input multi-output) 시스템에 FTN(faster than Nyquist)을 적용하여 대역 효율을 증가시키고 수신 성능을 향상시키고자 한다. 또한 MRC(maximum ratio combining) 및 경판정(hard decision)을 적용하여 수신 안테나 개수에 따른 수신 성능을 컴퓨터 실험을 통하여 알아본다.

  • PDF

A Study on the Structure of Time Unit and SIMO of MODAPTS and Development of High Task MODAPTS(HITMAT) (MODAPTS의 시간단위 및 동시동작의 구조와 High Task MODAPTS(HITMAP)의 개발에 관한 연구)

  • Park, Seong-Hak
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.2
    • /
    • pp.137-142
    • /
    • 1992
  • MODAPTS has been widely used for establishing the standard time of manual works because of easy application of the system. However this system was developed based on MTM, winch was one of the low task standard. Also in this system, it usually becomes a cause of error in accuracy that all the simultaneous motions(SIMO) should be analyzed in the sequent motions of two hands. In order to improve the weak points of MODAPTS, the structure of time unit and SIMO of MODAPTS was researched, and HITMAP was developed on the basis of Work Factor System which was one of the high task standard. HITMAP is composed of 26 standard elements and it's time unit is MD(1MD=0.1 second) and MGSRMPS is the motion pattern of HITMAP. In this study HITMAP shows more than 95% of accuracy to WF. Therefor, it is expected that HITMAP can be used for the improvement of productivity and incentive systems.

  • PDF

Blind MMSE Equalization of FIR/IIR Channels Using Oversampling and Multichannel Linear Prediction

  • Chen, Fangjiong;Kwong, Sam;Kok, Chi-Wah
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.162-172
    • /
    • 2009
  • A linear-prediction-based blind equalization algorithm for single-input single-output (SISO) finite impulse response/infinite impulse response (FIR/IIR) channels is proposed. The new algorithm is based on second-order statistics, and it does not require channel order estimation. By oversampling the channel output, the SISO channel model is converted to a special single-input multiple-output (SIMO) model. Two forward linear predictors with consecutive prediction delays are applied to the subchannel outputs of the SIMO model. It is demonstrated that the partial parameters of the SIMO model can be estimated from the difference between the prediction errors when the length of the predictors is sufficiently large. The sufficient filter length for achieving the optimal prediction is also derived. Based on the estimated parameters, both batch and adaptive minimum-mean-square-error equalizers are developed. The performance of the proposed equalizers is evaluated by computer simulations and compared with existing algorithms.

  • PDF

Analysis & Implementation of SISO, SIMO, MISO and MIMO in 5G Communication Systems Based on SDR

  • Meriem DRISSI;Nabil BENJELLOUN;Philippe DESCAMPS;Ali GHARSALLAH
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.140-146
    • /
    • 2023
  • With the rapid growth of new users and massive need for very high data rate in 5G communications system, different technologies have been developed and applied to enhance communication efficiency. One of those technologies is the MISO, MISO and MIMO which transmits and receives information with more reliability by using multiple antennas on transmitter or/and receiver side. This paper presents the latest trends in 5G telecommunications system based on software defined radio, A novel low-cost SIMO, MISO and MIMO using flexibility between USRP and Simulink is implemented tested and validated.

Unbiased blind channel estimation-based blind channel equalization for SIMO channel (SIMO 채널에서 바이어스가 없는 블라인드 채널 추정을 이용한 블라인드 채널 등화)

  • 변을출;안경승;백흥기
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.829-832
    • /
    • 2001
  • 본 논문에서는 2차 통계치를 이용하여 패널추징 및 등화 기법을 제안하였다. 기존의 채널 추정 알고리듬은 잡음이 없는 환경에서 LS방법을 이용하기 때문에 잡음이 강한 패널에서는 원하는 성능을 얻을 수 없는 단점이 있다. 수신신호의 상관행렬의 최소 고유값에 대응하는 고유벡터는 채널의 임펄스 응답에 관한 정보를 포함하고 있다. 이러한 고유 벡터를 매시간마다 갱신시키면서 구하는 적응 알고리듬을 제안하고 이를 이용하여 블라인드 채널 추정 및 등화기 파라미터를 추정하였다. 제안한 알고리듬은 잡음에 강인한 특성을 보일 뿐 아니라 기존의 알고리듬들 보다 우수한 채널 추정 및 등화 성능을 모의 실험을 통하여 검증하였다.

  • PDF

Iterative LBG Clustering for SIMO Channel Identification

  • Daneshgaran, Fred;Laddomada, Massimiliano
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • This paper deals with the problem of channel identification for Single Input Multiple Output (SIMO) slow fading channels using clustering algorithms. Due to the intrinsic memory of the discrete-time model of the channel, over short observation periods, the received data vectors of the SIMO model are spread in clusters because of the AWGN noise. Each cluster is practically centered around the ideal channel output labels without noise and the noisy received vectors are distributed according to a multivariate Gaussian distribution. Starting from the Markov SIMO channel model, simultaneous maximum ikelihood estimation of the input vector and the channel coefficients reduce to one of obtaining the values of this pair that minimizes the sum of the Euclidean norms between the received and the estimated output vectors. Viterbi algorithm can be used for this purpose provided the trellis diagram of the Markov model can be labeled with the noiseless channel outputs. The problem of identification of the ideal channel outputs, which is the focus of this paper, is then equivalent to designing a Vector Quantizer (VQ) from a training set corresponding to the observed noisy channel outputs. The Linde-Buzo-Gray (LBG)-type clustering algorithms [1] could be used to obtain the noiseless channel output labels from the noisy received vectors. One problem with the use of such algorithms for blind time-varying channel identification is the codebook initialization. This paper looks at two critical issues with regards to the use of VQ for channel identification. The first has to deal with the applicability of this technique in general; we present theoretical results for the conditions under which the technique may be applicable. The second aims at overcoming the codebook initialization problem by proposing a novel approach which attempts to make the first phase of the channel estimation faster than the classical codebook initialization methods. Sample simulation results are provided confirming the effectiveness of the proposed initialization technique.

Prior Maximum Likelihood Detection Verifier Design in MIMO Receivers (MIMO 수신기에서 사전 Maximum Likelihood 검파 검증기 설계)

  • Jeon, Hyoung-Goo;Bae, Jin-Ho;Lee, Dong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1063-1071
    • /
    • 2008
  • This paper proposes a prior maximum likelihood (ML) detection verifier which has an ability to verify if the zero forcing (ZF) detection results are identical to the ML detection results. Since more than 90% of ZF detection results are identical to ML detection results, the proposed verifier makes it possible to omit the computationally complex ML detection in 90% cases of MIMO signal detections. The proposed verifier is designed by using the diversity gain obtained from converting MIMO signal into single input multiple output (SIMO) signals. In the proposed method, single input multiple output (SIMO) signals for each transmit antenna are separated from MIMO signals after the MIMO signals are detected by ZF method. Computer simulations show that the true alarm probability of the proposed verifier is more than 80% and the false alarm probability is less than $10^{-4}$.

Multiple Eavesdropper-Based Physical Layer Security in SIMO System With Antenna Correlation

  • Sun, Gangcan;Liu, Mengge;Han, Zhuo;Zhao, Chuanyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.422-436
    • /
    • 2020
  • In this paper, we investigate the impact of antenna correlation on secure transmission in a multi-eavesdropper single-input multiple-output (SIMO) system, where the receiver and eavesdroppers are equipped with correlated antennas. Based on the practical passive eavesdropping system, the new closed-form expressions of secrecy outage probability (SOP) and non-zero secrecy capacity probability are derived to explore the effect of antenna correlation on the system with multiple eavesdroppers. To further analyze the secrecy performance of the investigated system, we theoretically derive the expression of asymptotic SOP to clearly show the diversity order and array gain. Finally, Monte Carlo simulations verify the effectiveness of our theoretical results.