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Iterative LBG Clustering for SIMO Channel Identification

Fred Daneshgaran and Massimiliano Laddomada

Abstract: This paper deals with the problem of channel identifi-
cation for Single Input Multiple Output (SIMO) slow fading chan-
nels using clustering algorithms. Due to the intrinsic memory of the
discrete-time model of the channel, over short observation periods,
the received data vectors of the SIMO model are spread in clusters
because of the AWGN noise. Each cluster is practically centered
around the ideal channel output labels without noise and the noisy
received vectors are distributed according to a multivariate Gaus-
sian distribution. Starting from the Markov SIMO channel model,
simultaneous maximum-likelihood estimation of the input vector
and the channel coefficients reduce to one of obtaining the values of
this pair that minimizes the sum of the Euclidean norms between
the received and the estimated output vectors. Viterbi algorithm
can be used for this purpose provided the trellis diagram of the
Markov model can be labeled with the noiseless channel outputs.
The problem of identification of the ideal channel outputs, which
is the focus of this paper, is then equivalent to designing a Vector
Quantizer (VQ) from a training set corresponding to the observed
noisy channel outputs.

The Linde-Buzo-Gray (LBG)-type clustering algorithms [1]
could be used to obtain the noiseless channel output labels from
the noisy received vectors. One problem with the use of such al-
gorithms for blind time-varying channel identification is the code-
book initialization. This paper looks at two critical issues with re-
gards to the use of VQ for channel identification. The first has to
deal with the applicability of this technique in general; we present
theoretical results for the conditions under which the technique
may be applicable. The second aims at overcoming the codebook
initialization problem by proposing a novel approach which at-
tempts to make the first phase of the channel estimation faster than
the classical codebook initialization methods. Sample simulation
results are provided confirming the effectiveness of the proposed
initialization technique.

Index Terms: Blind Equalization, clustering, channel estimation,
fading.

1. INTRODUCTION

Frequency-selective slow fading channels suffer from tempo-
ral dispersion which produces intersymbol interference (ISI) at
the receiver. Diversity is an efficient means of counteracting
the undesirable effects of the channel, which, in the presence of
time-varying ISI, is modeled as a discrete-time finite memory
system [2].

From a theoretical point of view, there are two main classes
of algorithms which can be used for blind data detection. The
first consists of evaluating an estimate of the inverse channel
impulse response at the receiver and convolving this response
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with the received signal in order to detect the transmitted data.
However, it is known that such algorithms suffer from noise en-
hancement, especially when channel introduces severe distor-
tion characterized by deep nulls in the channel transfer function
[2], [3]. The second approach accomplishes sequence detec-
tion via maximum likelihood estimation of the transmitted se-
quence. The recent literature have demonstrated that these al-
gorithms could follow the channel dynamics in the presence of
deep fading characterized by deep nulls in the channel impulse
response [4]-[20]. Sato in {4] proposed a novel method to de-
tect the transmitted data sequence without the knowledge of the
channel response. In deep-fading situations, channel response
must be identified rather than equalized. Sato presented algo-
rithms that accomplish the tasks of channel identification and
sequence detection without the use of a training sequence (i.e.,
in a blind mode). An excellent work related to the problem of se-
quence estimation for blind equalization has been conducted by
Seshadri in [20]. In this paper, the author proposes a method for
estimating the transmitted sequence using the maximum likeli-
hood approach, by noting that the Viterbi algorithm (VA) could
simplify the sequence estimation phase once the trellis diagram
is labeled.

Wireless channels, in the presence of multipath fading, can
be modeled using the hidden Markov model (HMM) [7]. This
model is widely studied in the recent literature (see for exam-
ple, [10]) and is so general that it could be adopted for describ-
ing other types of signal impairments, such as interference and
non-Gaussian noise, in addition to fading and ISI whose effects
extend over several symbol intervals.

The maximum likelihood sequence estimation is generally
accomplished in two consecutive, or jointly interleaved steps,
namely channel identification and sequence estimation. Kaleh
et al. [6] proposed an iterative method for jointly conduct-
ing the channel estimation and the symbol detection via the
Baum-Welch algorithm. Channel parameter estimation is ac-
complished through a maximum likelihood criterion. Blind Se-
quence estimation, without channel identification, has also been
proposed by Tong [8], who suggested a method to estimate the
source correlation from the observations of the received sym-
bols without knowing the channel characteristics. Subsequently,
VA is used to reconstruct the input symbols. In [9], a similar
problem has been addressed. In comparison to the previous two
works mentioned above, in [9], it is not assumed that the channel
is static throughout the duration of the observed sequence and
a time-varying channel response is adopted that the suggested
method is able to track.

An approach based on maximum likelihood sequence esti-
mation for signals over finite state Markov channels has been
adopted by Kong et al. in [5]. In their work, the authors also
proposed a maximum a posteriori probability(MAP) criterion to
estimate the channel state sequence and the VA to obtain the op-
timum channel state sequence which is used in a second phase
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to make soft-decision decoding. MAP criterion coupled with
the expectation-maximization (EM) algorithm has been used by
Turin in [10] whereby the EM algorithm is used to conduct MAP
sequence estimation iteratively.

The problem of blind channel identification has been consid-
ered in [11], where a least-squares approach for SIMO chan-
nels has been proposed. In [12] and [13], the authors for-
mulated a solution to the channel identification problem using
second-order statistics following a time-domain and frequency
domain approaches, respectively. In [14], the authors proposed
a blind identification algorithm based on second-order statistics
for single-input double-output channel model. Other algorithms
proposed for blind channel identification have been presented in
[15]-[16]. A review of blind identification algorithms proposed
in the literature may be found in [17].

In connection with synchronization schemes for multipath
channels, the authors propose, in [18], a nondata-aided car-
rier frequency offset estimator for noncircular (i.e., modula-
tion formats with real-valued constellations) modulation formats
for transmission through unknown frequency-selective chan-
nels. The advantage of the proposed algorithm derives from the
fact that no knowledge of the multipath channel and transmit-
ted data sequence is required, and that the synchronizer admits
a feedforward structure that may be easily implemented using
digital signal processing techniques.

In [19], the author considered the problem of blind symbol
clock and frequency offset estimation in the context of time-
selective fading channels, and compared the performance of var-
ious estimators based on the cyclic correlation properties of the
signal. We shall assume throughout the rest of the paper that the
carrier and symbol timing is acquired at the receiver and focus
on the blind identification problem.

The assumptions stated above make the overall SIMO system
resemble a vector Markov source whose noisy outputs consti-
tute the observables. State transition analysis can be conducted
on the Markov model with the aim of deducing the transition
matrix of the model which could in turn be used to make si-
multaneous maximum-likelihood estimation of the input vectors
and the channel coefficients. The problem then reduces to one
of obtaining the values of this pair that minimizes the sum of the
Euclidean norms between the received and the estimated output
vectors using the Viterbi algorithm, provided the trellis diagram
of the Markov model can be labeled with the noiseless channel
outputs [21].

This paper focuses on the channel identification problem the
solution of which may then be used in a more general sequence
estimation problem, given the considerations stated above. In
particular, this paper looks at two critical issues in the use of
Vector Quantization (VQ) type clustering algorithms for channel
identification. We aim to develop theoretical results that indicate
conditions under which VQ techniques may be applicable for
channel identification and develop an on-line initialization algo-
rithm to speed up the codebook initialization process. Channel
identification is then accomplished through LBG algorithm after
initialization.

The paper is organized as follows. Section Il discusses the ap-
plication of clustering algorithms to channel identification, after
developing the mathematical terminology adopted throughout
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Fig. 1. SIMO channel model.

the paper. Section I1I is devoted to the theoretical analysis of the
applicability of VQ, followed by Section IV which presents the
on-line initialization algorithm. Section V is devoted to simu-
lation results verifying functionality of the proposed technique.
Section VI aims at generalizing the obtained results to a more
general class of channels suffering from ISI. Finally, in Sec-
tion VII we present the conclusions.

II. MATHEMATICAL FORMULATION OF THE
PROBLEM

We start this section by establishing the terminology and no-
tations used throughout this paper. Referring to Fig. 1, each
branch in the SIMO model represents a distinct Finite Impulse
Response (FIR) channel with memory L. We assume that ev-
ery branch has the same memory dimension. The diversity or-
der, that is the number of FIR branches in the SIMO model,
is equal to D. The noise sequence corrupting the output of
a given branch is an independent identically distributed (i.i.d.)
zero mean AWGN sequence, and the noise sequences in differ-
ent branches are independent of each other. We assume that the
received signal in different channel branches undergo uncorre-
lated fading [2].

We assume that the transmitted symbols are binary PAM
modulated, taking values from the set {—1,+1} with equal
probability. The extension to larger alphabet sizes and quadra-
ture modulation is straightforward, but is omitted to keep the
presentation lucid. The average received Signal to Noise Ratio
(SNR) for branch d is:

_ Bz T lhail?
N,

]‘\%’d ) ey
and it is usually assumed that the SNR in each diversity branch is
equal [3]. In the latter formula, N, = %E [Inax|?], where ngy, is
the k-th independent complex zero-mean white Gaussian noise
samples added to the output of the d-th branch in the SIMO
model. Since PAM modulation is assumed, actually only the in-
phase component of the noise is of relevance, hence the factor
N, in the expression for SNR above. It is also assumed that
El|lzi?] = 1[3].

With regards to the operation of the receiver, we assume that
the carrier recovery loop generates a coherent carrier for per-
forming the down conversion of the received RF signal. Samples
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of the matched filters’ outputs taken at the symbol rate generate
the matrix of sufficient statistic whereby each column is a vec-
tor whose components are the samples of the filter outputs at the
receiver.

Our analysis is based on the polyphase decomposition of the
output sequences of the SIMO channel depicted in Fig. 1. Such
a decomposition allows for an easy description of the system
dynamics as transitions between phases, and it is based on the
following assumptions.

« The output of the SIMO channel is observed over an interval
of length B = K(L + 1) symbols, with the starting time index
set to 0, and the final time index set to (K (L + 1) — 1). The

input to the SIMO channel is the sequence X = {z j }j‘:((? =1
Consider parsing the input sequence into groups of (L +1) sym-
bols. Let the {-th phase of the parsed input sequence be denoted
by X! = {(xj(L+1)+lvxj(L+1)+l+17~-a$j(1’/+1)+l+L)}JK:—Ol for
= 0, 1, ceny L. Each (L + 1) tuple (xj(L+1)+l7 Ti(L+1)+1+1>

<y Tj(L41)4I+L) Tepresents a super-symbol we denote by s§
Hence, X! = {Sé‘};{:_ol- The symbols & g (111), Lk (L+1)+15

oy TK(L+1)+L—1 are some fixed but arbitrary sequence un-
known to the receiver.

o We partition the received symbols into a total of (L+1) phases
as wclell. In particular, the [-th phase of the i-th branch outputs
is Vi = {o8, 1507 = (gt Vi = 1,2,.,D
and ! = 0,1, ..., L, where y; ; denotes the ¢-th output of the -
th branch. In a totally analogous fashion, we may define the

associated noiseless outputs @l which denotes the [-th phase of
the i-th channel noiseless outputs.

o The FIR impulse response of the i-th channel is the set of
coefficients H; = hioshia, - hin), i = 1,2,.., D, where
[.]’ denotes the transpose operation.

We can suppress the dynamics of the SIMO system model de-
picted in Fig. 1 by looking at any given phase of the received

vectors (i.e., the set of observables ﬁl fori =1,2,..,D). Sup-
pressing the model dynamics, the estimation of the noiseless
channel output labels (i.e., the set of values that 5} can assume)
is essentially a clustering problem with the Euclidian norm dis-
tance metric. Note that the noiseless channel output vectors
&l = {cl,}2, = {H[s}}2, can assume a finite set of val-
ues since s/ can assume at most (g + 1)“*) possible values
if input is (¢ + 1)-ary. The clustering problem reduces to min-
imization of S>1_ ' |7} — &Y. In particular, given the set of
received vectors ., the objective is to design a Vector Quantizer
(VQ) via a proper selection of the reconstruction points with the
objective of minimizing the overall codebook distortion. Note
that the construction of the VQ codebook in this case does not
require the knowledge of the SNR and in particular N,.

A standard iterative technique for VQ codebook design is the
LBG algorithm [1]. In particular, let {¢}, &7, ..,6(’;“)“1} de-
note the estimated noiseless channel outputs at iteration p. To
update the codebook, we first classify the received vectors !
based on the minimum Euclidean norm. Let C,/(i) denote the
set of indices of the vectors 7, whose nearest neighbor is ¢7.
Then we may write

Vi=Y ) w-enr, )

i keCl()
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where, Vpl denotes the value of the cost function at iteration p.

Now, consider minimization of V;f with respect to the recon-

struction vector ¢ ]?” :

l 1 =p2 R
VerVy = Ver Y G -&P=0 0
KEC,(F)
—-p+1 —~1
agro= Z Yk )
keC 1(5)
where, ¢ P+l 45 the updated reconstruction vector at iteration
¥ p

(p + 1). Above is the well known centroid condition in the
LBG algorithm. In practice, not considering the model dynam-
ics, clustering can be conducted on all the received vectors and
not those associated with any given phase, although theoretically
speaking, the channel identification should utilize the system dy-
namics albeit via a much more complex estimation process.

III. RELATIONSHIP BETWEEN CLUSTER SIZE AND
SNR AT THE SIMO RECEIVER INPUT

The received vectors at the channel output are distributed in
clusters whose dimensions are related to the noise variances
of the SIMO channel model. Since it has been assumed that
the noiseless output vectors are corrupted by AWGN noise at
the receiver, the received vectors are spread in clusters centered
around the ideal channel outputs and are distributed according
to a multivariate Gaussian distribution.

Knowledge of the SNR at the receiver provides a valuable
side information about the size of the clusters. In particular, we
can determine the effective radius of the hyper-sphere within
which the received vectors may fall with a certain probabil-
ity. The real part of the zero mean complex noise vector that
adds to the noiseless channel output vector at time index k is
Tig = |1k, Mokr, -, MDKr) - We focus on the real part of the
complex noise quantities since the modulation assumed is PAM.
For a given realization of the noise vector, the hyper-sphere
surrounding each noiseless channel output vector has radius:

R=y 25:1 n2.,. As noted above, each complex noise com-

ponent is zero mean and all the components are assumed to have
equal variance 2NV,, therefore the squared radius of the hyper-
sphere, R? denoted Y, has a central Chi-square distribution with
D degrees of freedom. The resulting Probability Density Func-
tion (PDF) is:

1 Dj2-1

— ”y/QNo
ND2D2T(Dj2)Y ¢ O

fr(y)

where, T'(p) is the Gamma function. The Cumulative Distri-
bution Function (CDF) has a closed form expression for even
D, but in general, values of CDF for a normalized unit vari-
ance components can be found in tabulated form [22]. For a
given fixed SNR per branch N% |¢ with E normalized to unity,
the noise variance N, can be easily computed and used to ob-
tain the effective squared radius of the hyper-sphere surrounding
each noiseless channel output label, containing a certain fraction
of the total probability (henceforth denoted as the M % contain-
ment probability squared radius). For instance, for & = 1 and



160
L I R o
35F

3k
@
=
k)
T 2.5[— 99% Prob.
E - - -
2 90% Prob. s e
£ -~
s - -
£ 2+ - - -
Q - -
(o] - -
2 -
g15F - 75% Prob.
2
S
a

1t 4

e - -
05 P |
- - -
s
-
o 1 | . 1 1 . . 4 L
0 2 4 6 8 10 12 14 6 18 20

Dimension

Fig. 2. Probability containment squared radii versus the number of di-
versity branches identifying the dimension of the observation space.

at an SNR of 10 dB per diversity branch, Fig. 2 depicts the 99%,
90% and 75% containment probability squared radii, for dimen-
sions from 2 to 20. Cleatly, as the number of diversity branches
increase, the dimensionality of the observation space grows, and
the probability containment squared radii grow as well. This
growth in the containment squared radii should come as no sur-
prise in light of the normalization that the SNR per branch of
the SIMO model is constant. The implication being that as the
number of branches increases, the cumulative received signal
energy increases as well, a scenario that may or may not be true
in practice. In what follows we shall consider two prevailing
scenarios which may hold in practice, and for each draw con-
clusions about the applicability of clustering algorithms based
on theoretical observations.

A. Spatial Diversity and Multiple Antenna Reception

In this scenario, several samples of the spatial domain signal
are available using multiple antennas at the receiver. Hence, it
is reasonable to assume that the signals at the output of different
antennas have undergone uncorrelated fading and the mean SNR
per branch of our SIMO model is constant.

From a clustering point of view, what matters is the fraction
of the volume of the noise hyper-spheres for a given contain-
ment probability, relative to the total volume of the hyper-sphere
containing all the noiseless channel output vectors (henceforth
called the signal hyper-sphere). The volume of a hyper-sphere
of radius 7 in n-dimension is given as:

7rn/2rn

Vol(r,n) = W) for n even, (6)
on g gt (n=1)) pn

Vol(r,n) = T 7(1'2 ) for n odd. @)

The squared radius of the signal hyper-sphere per dimension is
one due to the normalization Ey, = 1. Hence, the overall radius
of the hyper-sphere in n dimension scales as /2. Having the
containment probability squared radii, obtained from the Chi-
squared CDF tables, allows us to compute the ratio of the vol-
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Fig. 4. Ratio of the volume of the noise to signal hyper-spheres for
different containment probabilities at SNR of 10 dB per branch, as a
function of the number of diversity branches.

ume of the noise hyper-sphere for a certain containment proba-
bility, to the total signal hyper-sphere. This ratio provides a mea-
sure of the effectiveness of any clustering algorithm for channel
identification. Fig. 3 depicts the volume ratio for 99%, 90%
and 75% containment probabilities as a function of the SNR per
branch of the SIMO system with two branches. As is evident
from the figure, below 6.6 dB of SNR per branch, the 99% con-
tainment probability volume ratio is above one. While it is dif-
ficult to assess which containment probability should be used
as a reference in assessing feasibility of clustering for channel
identification, certain conclusions are consistent regardless of
the actual value used. In particular, there is a threshold effect
whereby below a certain SNR, the volume ratio exceeds one,
implying that the noise hyper-sphere becomes greater than the
signal hyper-sphere. In addition, note that under ideal circum-
stances, the number of noiseless channel output vectors is 2111
(assuming a binary input for the SIMO channel model). We note
that this is an ideal circumstance because it is not necessarily
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Fig. 5. Ratio of the volume of the noise to signal hyper-spheres as a
function of the number of diversity branches for cumulative SNR of
10 dB at the receiver.

always true that all the possible noiseless output vectors are in-
deed distinguishable. There may be several binary combinations
at the input leading to the same (or very close) noiseless output
vectors. The conclusion being that the volume ratio above pro-
vides an upperbound on the number of noise clusters that can be
packed in the signal hyper-sphere, and hence an upperbound on
the allowed system memory L where clustering could be consid-
ered for channel identification. Based on the foregoing discus-
sions, a general rule of thumb that may be applied regarding the
SNR threshold is to consider the 75% containment probability
volume ratio curve, and estimate the SNR at the point this ra-
tio reaches about 2~(“*1) (i.e., the packing density of the signal
hyper-sphere under ideal circumstances). For a memory L = 2

system, the resulting SNR threshold is about 10 dB per branch.
The second issue concerns the choice of the number of diver-

sity branches to use at the receiver. To assess this, Fig. 4 depicts
the noise hyper-sphere to signal hyper-sphere volume ratios as
a function of the number of diversity branches at a fixed SNR
per branch equal to 10 dB. A key observation regarding this fig-
ure is that the volume ratio curves regardless of the containment
probability, decay exponentially. The implication being that the
knee of the exponential curve marks a distinct boundary point
whereby most of the gain in using diversity for blind channel
identification using clustering can be obtained. For our exam-
ple at an SNR of 10 dB per branch, this corresponds to a SIMO
with 5 branches. Note that this boundary point is consistent and
independent of which containment probability value is actually
used.

B. Frequency and/or Time Diversity Transmission and Recep-
tion

In this scenario, the total transmit power and the mean to-
tal received power is fixed regardless of the number of diversity
branches (i.e., the total SNR is constant). Compared to the pre-
vious case, we can handle this scenario easily by scaling the
SNR per branch based on the number of branches in the SIMO
model.

In particular, let E,,: represent the total available signal
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Fig. 6. Ratio of the volume of the noise to signal hyper-spheres as a
function of the number of diversity branches for cumulative SNR of
14 dB at the receiver.

energy at the receiver irrespective of the number of SIMO
branches. Assuming equal SNR per branch, the resulting per
branch SNR would be E;./N, = (E;.:/D)/N, = SNRb.
Now normalizing . = 1, we have that for a D-dimensional
observation space with equal average SNR per diversity branch
the noise variance per branch is 1/SNRb. For instance, for a
cumulative SNR of 10 dB, Fig. 5 depicts the ratio of the vol-
ume of the noise hyper-sphere to the signal hyper-sphere as a
function of the number of diversity branches. Note that at 99%
containment probability, the noise hyper-sphere almost occupies
the entire volume of space for two diversity branches.

A threshold with respect to the use of a SIMO system for
clustering can be observed as the cumulative SNR is varied. In
particular, below about 10 dB cumulative SNR, the volume ra-
tio curves grow with increasing number of diversity branches,
indicating that below this value, use of a SIMO system with
clustering applied for channel identification is not the best op-
tion. On the other hand above this threshold on the cumulative
SNR, there is an optimal number of diversity branches where
the volume ratio attains a minimum value. This optimal point is
more or less the same regardless of the value of the containment
probability itself (i.e., the minimum is broad for low values of
containment probability). As an example, Fig. 6 depicts the ratio
of the volume of the noise to signal hyper-spheres at a cumula-
tive SNR of 14 dB for various containment probabilities. Note
that the minimum ratio is achieved for D ~ 5. We can estimate
the optimal value of SNR per branch of the SIMO system as
a function of the number of branches by looking at the curves
of noise to signal volume ratios in D-space as a function of the
number of SIMO branches and with SNR varied continuously.
The result is reported in Table 1. Entries of Table 1 should not
be interpreted as representing the only SNR values per branch
of the SIMO system that couid be used. Indeed as the SNR per
branch of the SIMO system increases, the task of clustering is
simplified as the effective noise radius for a given containment
probability decreases. The numbers in essence provide the best
trade-off between available SNR at the receiver and the number
of SIMO branches in so far as the discernability of the noisy
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D | SNRt (dB) | SNRb (dB)
2 |11 8.0
312 72
4 | 135 7.5
5114 7.0
6 |15 7.2
7 1155 7.0
g8 | 16 7.0
9 | 162 6.7
10 | 16.5 6.5
11 | 16.7 6.3
12 | 17 6.2

Table 1. Optimal cumulative SNR and SNR per branch as a function of
the number of SIMO branches, D is the number of SIMO branches,
SN Rt is the total SNR and SN Rb is the SNR per branch.

clusters are concerned.

1IV. CHANNEL IDENTIFICATION THROUGH VECTOR
CLASSIFICATION AND CLUSTERING

In this section, starting from Equ. (3) and (4), we shall de-
velop the channel identification procedure, simplifying the no-
tations adopted in section II.

Use of the LBG algorithm [23] coupled with the knowledge
of the sizes of the clusters allows data in each cluster to be used
to obtain the respective cluster centroid, i.e. one of the ideal
channel output vectors in absence of noise. Any clustering algo-
rithm maps the k-dimensional received vectors into a finite set
containing N centroids. In our problem, & is equal to the branch
diversity at the receiver side, while the parameter N corresponds
to the number of possible states derived from the channel model,
ie. N = (¢ + )T, where g + 1 = #{S} is the cardinality
of the source symbol ensemble and L is equal to the number
of delay elements in the channel model. Clustering produces a
codebook C' = {¢1,@,,...,¢n} in which any vector ¢; € R*
forany : € J = {1,2,..., N}. Note that clustering attempts
to associate each received vector 3 to the closest ideal channel
output vector, that is the receiver output in absence of channel
noise, in accordance to a suitable distance measure that will be
specified later.

Generally speaking, whatever the adopted algorithm may be,
the channel is uniquely identifiable only if it is possible to ob-
serve at the input of the receiver in the absence of noise, all the
possible channel output labels. In other words, if the channel
model has L delay elements and the transmitted symbols belong
to an ensemble with cardinality g + 1, it is necessary that all the
(g + 1)X*! possible labels are distinguishable at the input of the
receiver. Otherwise, the channel cannot be uniquely identified.

The performance of the clustering algorithms are evaluated
by means of a suitable distortion measure. In this paper, we
have used a nonnegative cost function which determines the Eu-
clidean distance between the ideal centroids and the ones recon-
structed by the proposed algorithms.

Associated with any N point centroids is a partition of ®* into
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N cells denoted R; for ¢ € J. Each cell, or cluster, is identified
by the following ensemble:

R, C {ge R* :dm,&) <d(@.¢); Vi#i}, B

while the clustering algorithm applied to the problem of channel
identification, could be represented as follows:

QW) =¢ onlyif d(7,¢) < d(@,¢;) Vj #i. )]

Clustering is fully determined by the codebook and the dis-
tortion measure as noted above. Note that, once the distortion
measure is defined, no cell boundary needs to be specified in
order to map the received vectors to the closest centroid in the
codebook. If a received vector is equally distant from two or
more codebook vectors, it is assigned to the first codebook vec-
tor already stored in the codebook.

The centroid condition is specified by the following relation:

¢ = E(yly € R;), wherei € {1,...,#{R;} = N}. (10)
The formuia above indicates that each centroid ¢; corresponds to
the mean of the vectors which fall in the cluster R; (see Fig. 7).
Conventional clustering algorithms, applied to source compres-
sion [23], use LBG-type algorithms to minimize, in successive
iteration steps, the distortion between source symbols and the
corresponding quantized symbols (i.e., the representative sym-
bol) whose index is transmitted. Indeed, in this work we show
that classical LBG algorithm applied to the received noisy chan-
nel outputs provides the noiseless channel output vectors. De-
tails about the LBG algorithm applied to source compression
could be found in [23].

A. Initialization and LBG Improvement of the Codebook

The core problem associated with the use of LBG type algo-
rithms for time-varying channel identification is the codebook
initialization which if not conducted properly, couid lead to lo-
cally optimal codebooks. For our application this could essen-
tially translate into having incorrect estimates of the noiseless
channel outputs.

In this section, we deal with the problem of initializing the
codebook vectors. Classical codebook initialization techniques
such as Pruning, Random Coding, use of Product Codes and
so on [23], create a codebook to which LBG iteration steps are
then applied. However, these techniques requires one to scan
all the data to be processed in order to generate IV initial code-
book vectors. Only after this phase, LBG algorithm is applied.
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used in simulations.

In time-varying fading channels, it is very important that chan-
nel identification is conducted very quickly in order to allow the
receiver to follow the channel dynamics. For this purpose, we
propose a new method for creating the initial codebook. The
technique allows one to create the codebook in an on-line fash-
ion as soon as data are received. It works as follows; the first
received data becomes a codebook vector. For each additional
received data vector 5, = (Y1, - - - , Ypk)» which we indicate as
the vector received at the time index k (i.e. 7y), the algorithm
scans the vectors already inserted in the codebook and evalu-
ates the Euclidean distances between them and the current data
vector. If the minimum of these distances is greater than a pre-
determined threshold, the vector is inserted into the codebook as
anew cluster centroid. Otherwise, the received vector is inserted
in the cluster indicated by the closest vector already existing in
the codebook. In the case the received vector is equally dis-
tant from two or more codebook vectors, it is associated to the
first vector encountered. The mean value of all data belonging
to a certain cluster will yield the cluster centroid according to
Equation ( 10). This process is repeated for every received data
vector. In this way, clusters and the codebook are evaluated in
only one step. At the end of this first phase, the codebook vec-
tors are replaced by those obtained via the centroid formula, that
is:

an

where p is the number of codebook improvement LBG iteration
(in the first phase, p = 1), 3, ; indicates the j-th vector belong-
ing to the i-th cluster, and n; is the number of received vectors
classified into the i-th cluster (Zfll n; = B, where B is the
block size dimension, i.e., the number of received vectors on
which clustering is performed). Note that received data are au-
tomatically classified into the various clusters based only on the
distance properties.

In all simulations, the threshold thr has been chosen such
that the clusters around the ideal centroids have a radius equal

163

x— centroids after codebook initialization
4

2
2 &
1 E
X onx
>0 S0 .y
*
-1 . ™
-2
-2
-3 -4
~4 -2 0 2 4 - 4
y1
X— centroids after 5 LBG iterations
2
2
X 1
*
0 SN0
x
* -
-2
-2
_4 -3
-4 -2 0 2 4 4 -2 0 2 4

Y.
! SNR=10dB, N=450 received vectors

Fig. 9. SIMO channel clusters and related centroids obtained using the
proposed initialization method.

to 20;, i = 1,..., D, where o; = E[|n;|%]. From Equ. (1), it is
evident that all the 0, e = 1,..., D are equal.

Codebook improvement can be achieved via the application
of the LBG algorithm. Starting from the initial codebook ob-
tained using the procedure explained previously, we iteratively
improve the codebook such that the codebook vectors converge
toward the centroids of the channel output data clusters. After
having classified the block of received data with respect to the
centroids at step p, at the end of each LBG iteration new code-
book centroids are evaluated using equation (11).

The codebook initialization technique proposed in this paper
is compared to to the pruning method both in terms of speed of
convergence, and the final distortion.

V. SIMULATION RESULTS

In this section, we present simulation results obtained for
deep-fading SIMO channel with two branches having coeffi-
cients hy = [0.405,0.817,0.407] and hy = [0.17,0.9, —0.4].
The channel coefficients are for severely distorting channels [2]
and satisfy the normalization ZiL:O |hji|> = 1 for each branch
j = 1,2 (see Fig. 8). Note that the latter condition implies the
use of automatic gain control in order for the variances of the
channel outputs to be kept constant [24].

Simulation parameters are D = 2, L = 2, 2—PAM binary
signaling with source symbols @y = —1, a; = +1 and the SNR
per branch is 10 dB. Simulation results for this SIMO channel
model are shown in Fig. 9 and Fig. 10. The sub-figures located
in the upper-left hand corner show all the received data vectors
and the clusters they produce because of the effect of noise in
the channel. In the upper-right hand corner of both figures, we
depict the clusters obtained after the initialization stage with the
proposed on-line algorithm (8 square points) and the initializa-
tion with the pruning technique. In the same figures, the ideal
centroids are marked using stars. Note that the proposed algo-
rithm results in centroids that are closer to the ideal noiseless
channel output labels than those obtained using the pruning ini-
tialization technique. Figures located in the lower-left hand cor-
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ner show the centroids (square points) obtained after five LBG
iterations, while the star points are the ideal centroids. In the
right side of the same composite figure we show the clusters
created by the received data and the centroids obtained after five
LBG iterations. Note that the estimated centroids after five iter-
ations are in the middle of the respective clusters. Other simu-
lation parameters are also shown in the figures. Fig. 11 depicts
the convergence behaviours of both techniques as a function of
the number of LBG codebook improvement steps. Both figures
have been parameterized with respect to the number of vectors
on which clustering is performed, and show the overall distor-
tion between the ideal and estimated centroids, evaluated using
the following formula:

N

D= Zd(gj-p’b;)v

j=1

12)

where, N is the number of clusters, d(., .) denotes the Euclidean
distance between vectors, and ¢;” is the centroid ¢; estimated at
the p-th step of the LBG iteration.
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In Fig. 12, the same overall distortion has been plotted as a
function of the LBG improvement step, and evaluated as a func-
tion of the number of the received vectors on which the LBG-
based algorithms have been applied. Finally, Fig. 13 depicts the
overall distortions as a function of the SNR at the receiver input.

Based on the simulation results, several observations can be
made.

« Fig. 11 highlights that the convergence behaviour of the algo-
rithms improves by increasing the number of the received vec-
tors and the LBG steps after the initialization stage. However,
with regards to the latter behaviour, after 5 LBG steps, over-
all distortions show asymptotic convergence that cannot be im-
proved anymore. The same behaviours are observed in Fig. 12.
o Fig. 13 show that the overall distortion can be considerably
improved by increasing the Signal-to-Noise ratio at the receiver
input.

o All the figures show the effectiveness of using LBG-type al-
gorithms to capture the dynamic variations of deep-fading chan-
nels and in particular the proposed initialization algorithm to
speed up the convergence process of the estimated centroids to-
ward the ideal ones.

VI. FURTHER RESULTS ON CHANNEL
IDENTIFICATION

Generally speaking, channel identification through the pro-
posed technique is effective in case the clusters are not overlap-
ping. This problem, however, is related not only to the SNR
at the receiver input, whose value affects the radii of the clus-
ters and then the possibility for the clusters to overlap, but also
on the number of ideal channel output labels, which depend on
the dimension of the modulation scheme and the memory of the
channel (i.e., the effects of ISI in producing adjacent symbols)
impacting the relative distances between ideal centroids. The
latter is strictly related to the channel characteristics. In the final
analysis, SNR has the main influence. Even in the presence of
deep nulls, the proposed methods are able to converge toward
the ideal channel output labels using sufficiently high SNR val-
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ues or via an increase in the number of diversity branches. The
result is that the clusters formed by the received vectors would
have effectively more room in the receiver space.

Many more simulations have been conducted on different
channels whose results are not reported here for brevity, in or-
der to verify the effectiveness of the proposed channel identifi-
cation method. As an example, Fig. 14 shows the results ob-
tained by applying the proposed initialization method and three
steps of the LBG algorithm, to the SIMO < hl(n), h2(n) >=
(0.4, .5, .1), (—0.57, 0.24, 0.33). Note that the first channel,
h1, has a frequency magnitude response with a deep null of -
50 dB, while the second has a null of around -30 dB. Simulation
parameters are as follows: D =2, L =2, SNR = 10dB. The
number of received vectors on which clustering has been con-
ducted is equal to 300 and the modulation format of the trans-
mitted symbols is 2-PAM.

An effective mean of reducing the number of received vec-
tors needed for accomplishing the clustering is to exploit the
anti-symmetrical characteristic of the clusters identified at the
receiver input. In other words, due to the symmetrical distribu-
tion of the M-PAM modulation, clusters are anti-symmetrically
distributed in the space (y1, y2). In this case, in fact, cou-
ple of ideal channel vectors differ in the sign, showing anti-
symmetrical properties due to the type of signaling used. This
deduction suggests one to perform clustering on a block of data
containing only half of the number of data used in the method
proposed before. Associating this approach to the on-line ini-
tialization described above, it is possible to obtain a fast channel
identification process.

VII. CONCLUSIONS

This paper has focused on the problem of channel identifica-
tion applied to slow-varying fading SIMO channels using clus-
tering algorithms. The goal of the paper has been two folds; 1) to
establish theoretical framework for determining when clustering
may be used for channel identification and to develop insights
about the role of the number of diversity branches and the re-
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ceived SNR for channel identification under different practical
scenarios; and 2) to present an on-line LBG codebook initial-
ization algorithm that leads to better convergence properties in
comparison to other initialization techniques, both in terms of
the rate of convergence and in terms of the overall distortion.
Simulations have been used to show the effectiveness of the pro-
posed algorithm.
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