• 제목/요약/키워드: SIMILARITY MATRIX

검색결과 316건 처리시간 0.027초

퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구 (A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation)

  • 이인호;신경식
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.67-84
    • /
    • 2010
  • 미래에 대한 정확한 예측은 경영자, 또는 기업이 수행하는 경영의사결정에 매우 중요한 역할을 한다. 예측만 정확하다면 경영의사결정의 질은 매우 높아질 수 있을 것이다. 하지만 점점 가속화되고 있는 경영 환경의 변화로 말미암아 미래 예측을 정확하게 하는 일은 점점 더 어려워지고 있다. 이에 기업에서는 정확한 예측을 위하여 전문가의 휴리스틱뿐만 아니라 과학적 예측모형을 함께 활용하여 예측의 성과를 높이는 노력을 해 오고 있다. 본 연구는 사례기반추론모형을 예측을 위한 기본 모형으로 설정하고, 데이터 간의 유사도 측정에 퍼지 관계의 개념을 적용함으로써 개선된 예측성과를 얻고자 하였다. 특히, 독립변수 중 기호 데이터 형식의 속성을 가지는 변수들간의 유사도를 측정하기 위해 이진논리의 개념(일치여부의 판단)과 퍼지 관계 및 합성의 개념을 이용하여 도출된 유사도 매트릭스를 사용하였다. 연구 결과, 기호 데이터 형식의 속성을 가지는 변수들 간의 유사도 측정에서 퍼지 관계 및 합성의 개념을 적용하는 방법이 이진논리의 개념을 적용하는 방법과 비교하여 더 우수한 예측정확성을 나타내었다. 그러나 유사도 측정을 위해 다양한 퍼지합성방법(Max-min 합성, Max-product 합성, Max-average 합성)을 적용하여 예측하는 경우에는 예측정확성 측면에서 퍼지 합성방법 간의 통계적인 차이는 유의하지 않았다. 본 연구는 사례기반추론 모형의 구축에서 가장 중요한 유사도 측정에 있어서 퍼지 관계 및 퍼지 합성의 개념을 적용함으로써 유사도 측정 및 적용 방법론을 제시하였다는데 의의가 있다.

BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Goo, Yoon Hoe
    • 충청수학회지
    • /
    • 제29권2호
    • /
    • pp.347-359
    • /
    • 2016
  • In this paper, we show that the solutions to perturbed functional differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$, have a bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of $t_{\infty}$-similarity.

그룹 테크놀러지에서의 기계 및 부품군을 형성하기 위한 발견적 해법 (A heuristic algorithm for forming machine cells and part families in group technology)

  • 이백
    • 대한산업공학회지
    • /
    • 제22권4호
    • /
    • pp.705-718
    • /
    • 1996
  • A similarity coefficient based algorithm is proposed to solve the machine cells and part families formation problem in group technology. Similarity coefficients are newly designed from the machine-part incidence matrix. Machine cells are formed using a recurrent neural network in which the similarity coefficients are used as connection weights between processing units. Then parts are assigned to complete the cell composition. The proposed algorithm is applied to 30 different kinds of problems appeared in the literature. The results are compared to those by the GRAFICS algorithm in terms of the grouping efficiency and efficacy.

  • PDF

Empirical Comparison of Word Similarity Measures Based on Co-Occurrence, Context, and a Vector Space Model

  • Kadowaki, Natsuki;Kishida, Kazuaki
    • Journal of Information Science Theory and Practice
    • /
    • 제8권2호
    • /
    • pp.6-17
    • /
    • 2020
  • Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.

A Max-Flow-Based Similarity Measure for Spectral Clustering

  • Cao, Jiangzhong;Chen, Pei;Zheng, Yun;Dai, Qingyun
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.311-320
    • /
    • 2013
  • In most spectral clustering approaches, the Gaussian kernel-based similarity measure is used to construct the affinity matrix. However, such a similarity measure does not work well on a dataset with a nonlinear and elongated structure. In this paper, we present a new similarity measure to deal with the nonlinearity issue. The maximum flow between data points is computed as the new similarity, which can satisfy the requirement for similarity in the clustering method. Additionally, the new similarity carries the global and local relations between data. We apply it to spectral clustering and compare the proposed similarity measure with other state-of-the-art methods on both synthetic and real-world data. The experiment results show the superiority of the new similarity: 1) The max-flow-based similarity measure can significantly improve the performance of spectral clustering; 2) It is robust and not sensitive to the parameters.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

ON SIMILARITY INVARIANTS OF EP MATRICES

  • Rajian, C.;Chelvam, T. Tamizh
    • East Asian mathematical journal
    • /
    • 제23권2호
    • /
    • pp.207-212
    • /
    • 2007
  • We describe the class of invertible matrices T such that $TAT^{-1}$ is EPr, for a given EPr matrix A of order n. Necessary and sufficient condition is determined for $TAT^{-1}$ to be EP for an arbitrary matrix A of order n.

  • PDF

상품구조 및 사용자 경향성에 기반한 추천 시스템 (Recommender System based on Product Taxonomy and User's Tendency)

  • 임헌상;김용수
    • 산업경영시스템학회지
    • /
    • 제36권2호
    • /
    • pp.74-80
    • /
    • 2013
  • In this study, a novel and flexible recommender system was developed, based on product taxonomy and usage patterns of users. The proposed system consists of the following four steps : (i) estimation of the product-preference matrix, (ii) construction of the product-preference matrix, (iii) estimation of the popularity and similarity levels for sought-after products, and (iv) recommendation of a products for the user. The product-preference matrix for each user is estimated through a linear combination of clicks, basket placements, and purchase statuses. Then the preference matrix of a particular genre is constructed by computing the ratios of the number of clicks, basket placements, and purchases of a product with respect to the total. The popularity and similarity levels of a user's clicked product are estimated with an entropy index. Based on this information, collaborative and content-based filtering is used to recommend a product to the user. To assess the effectiveness of the proposed approach, an empirical study was conducted by constructing an experimental e-commerce site. Our results clearly showed that the proposed hybrid method is superior to conventional methods.

잠재디리클레할당을 이용한 한국학술지인용색인의 풍력에너지 문헌검토 (Review of Wind Energy Publications in Korea Citation Index using Latent Dirichlet Allocation)

  • 김현구;이제현;오명찬
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.33-40
    • /
    • 2020
  • The research topics of more than 1,900 wind energy papers registered in the Korean Journal Citation Index (KCI) were modeled into 25 topics using latent directory allocation (LDA), and their consistency was cross-validated through principal component analysis (PCA) of the document word matrix. Key research topics in the wind energy field were identified as "offshore, wind farm," "blade, design," "generator, voltage, control," 'dynamic, load, noise," and "performance test." As a new method to determine the similarity between research topics in journals, a systematic evaluation method was proposed to analyze the correlation between topics by constructing a journal-topic matrix (JTM) and clustering them based on topic similarity between journals. By evaluating 24 journals that published more than 20 wind energy papers, it was confirmed that they were classified into meaningful clusters of mechanical engineering, electrical engineering, marine engineering, and renewable energy. It is expected that the proposed systematic method can be applied to the evaluation of the specificity of subsequent journals.

Paper Recommendation Using SPECTER with Low-Rank and Sparse Matrix Factorization

  • Panpan Guo;Gang Zhou;Jicang Lu;Zhufeng Li;Taojie Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1163-1185
    • /
    • 2024
  • With the sharp increase in the volume of literature data, researchers must spend considerable time and energy locating desired papers. A paper recommendation is the means necessary to solve this problem. Unfortunately, the large amount of data combined with sparsity makes personalizing papers challenging. Traditional matrix decomposition models have cold-start issues. Most overlook the importance of information and fail to consider the introduction of noise when using side information, resulting in unsatisfactory recommendations. This study proposes a paper recommendation method (PR-SLSMF) using document-level representation learning with citation-informed transformers (SPECTER) and low-rank and sparse matrix factorization; it uses SPECTER to learn paper content representation. The model calculates the similarity between papers and constructs a weighted heterogeneous information network (HIN), including citation and content similarity information. This method combines the LSMF method with HIN, effectively alleviating data sparsity and cold-start issues and avoiding topic drift. We validated the effectiveness of this method on two real datasets and the necessity of adding side information.