ON SIMILARITY INVARIANTS OF EP MATRICES

C. Rajian and T. Tamizh Chelvam*

Abstract

We describe the class of invertible matrices T such that $T A T^{-1}$ is $E P r$, for a given $E P r$ matrix A of order n. Necessary and sufficient condition is determined for $T A T^{-1}$ to be $E P$ for an arbitrary matrix A of order n.

1. Introduction

All matrices considered here are matrices over the complex field \mathbb{C}. In general, the class of $E P r$ matrices is not similarity invariant under $G L(n, \mathbb{C})$, the group of invertible $n \times n$ matrices. This means that, for $A \in E P r$ and $T \in G L(n, \mathbb{C}), T A T^{-1}$ need not be EPr. Hence the following questions arise: (i) Given an $E P r$ matrix A of order n, $(r<n)$ for which invertible $T, T A T^{-1}$ is $E P r$? (ii) Given an arbitrary matrix A of order n, is $T A T^{-1} E P$ for some $T \in G L(n, \mathbb{C})$?

In this paper, for a given $E P r$ matrix A, we characterize the set of all invertible T such that $T A T^{-1}$ is $E P r$. Specifically, we describe the class $E \operatorname{Pr}(A)=\left\{T \in G L(n, \mathbb{C}): T A T^{-1}\right.$ is $\left.E \operatorname{Pr}\right\}$. For a matrix A of order n, A^{*} denotes conjugate transpose of A. In [4] Donald W. Robinson has given the description of the class $C(A)=\{T \in$ $\left.G L(n, \mathbb{C}):\left(T A T^{-1}\right)^{\dagger}=T A^{\dagger} T^{-1}\right\}$, for a given square matrix A, where A^{\dagger} is the Moore-Penrose inverse of A, the unique solution of the equations $A X A=A, X A X=X,(A X)^{*}=A X$ and $(X A)^{*}=X A$. It is shown that for a given $E \operatorname{Pr}$ matrix $A, E \operatorname{Pr}(A)=C(A)$ and the structure of each element of $\operatorname{EPr}(A)$ is determined. Further a necessary

[^0]and sufficient condition is obtained for a square matrix to be range Hermitiable by a $T \in G L(n, \mathbb{C})$.

A matrix A is called $E P$ or range-Hermitian if $R(A)=R\left(A^{*}\right)$, where $R(X)$ denotes the range space of X. An $E P$ matrix of rank r is called $E P r$ matrix. We shall assume familiarity with the basic theory of Moore-Penrose inverse as given in [1]. In the sequel we shall make use of the following known results.

THEOREM 1.1. Let A be an $n \times n$ matrix and $T \in G L(n, \mathbb{C})$. Then A is EP if and only if $T^{*} A T$ is $E P$.

THEOREM 1.2. Let A be an $n \times n$ matrix. Then
(i) A is an EPr matrix if and only if there is a unitary matrix U and a nonsingular $r \times r$ matrix D such that

$$
A=U\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

(ii) A is EP if and only if A^{\dagger} is a polynomial in $A[1, \mathrm{p} .173]$
(iii) A is $E P$ if and only if $A A^{\dagger}=A^{\dagger} A$.

THEOREM 1.3. Let N be an $n \times n$ Hermitian matrix and A be any $n \times n$ matrix, then $R(N A) \subseteq R(A)$ if and only if $N A A^{\dagger}=A A^{\dagger} N$.

2. Main Results

THEOREM 2.1. Let A be an EPr matrix and $T \in G L(n, \mathbb{C})$. Then $T \in E P r(A)$ if and only if $T^{*} T$ commutes with $A A^{\dagger}$.

Proof. Assume that $T \in E \operatorname{Pr}(A)$. Since A is an $E P r$ matrix, $R(A)=R\left(A^{*}\right)$ and $T \in E P r(A)$, implies that $T A T^{-1}$ is $E P r$. By Theorem 1.1, $T^{*} T A$ is $E P r$. Hence, $R\left(T^{*} T A\right)=R\left(A^{*} T^{*} T\right)=R\left(A^{*}\right)=$ $R(A)$. This implies that $R\left(T^{*} T A\right) \subseteq R(A)$. Hence by Theorem 1.3, $T^{*} T A A^{\dagger}=A A^{\dagger} T^{*} T$. Each step is reversible and so the converse holds.

COROLLARY 2.2. If A and B are two EPr matrices such that $R(A)=R(B)$, then $E \operatorname{Pr}(A)=E \operatorname{Pr}(B)=E \operatorname{Pr}(A B)$.

Proof. Since $R(A)=R(B), A A^{\dagger}=B B^{\dagger}$, hence by Theorem 2.1, $\operatorname{EPr}(A)=E \operatorname{Pr}(B)$. Further A and B are $E \operatorname{Pr}$ matrices such that $R(A)=R(B)$, by Theorem 3 of [2] it follows that $A B$ is $E \operatorname{Pr}$ matrix and hence $R(A B)=R(A)=R(B)$ and $E \operatorname{Pr}(A B)=E \operatorname{Pr}(A)=$ $E \operatorname{Pr}(B)$.

REMARK 2.3. We note that for a given $E \operatorname{Pr}$ matrix A, the set $B_{A}=\{B \mid B$ an $E P r$ matrix with $R(B)=R(A)\}$ characterized in [2], has the property that $\operatorname{EPr}(A)=E \operatorname{Pr}(X)$ for each element X in B_{A}.

THEOREM 2.4. Let A be an $E P r$ matrix and $T \in \operatorname{EPr}(A)$. Then $T^{*} T$ is unitarily similar to a block Hermitian matrix

$$
\left[\begin{array}{cc}
K & 0 \\
0 & L
\end{array}\right]
$$

where K is of order $r \times r$ and L is of order $(n-r) \times(n-r)$.
Proof. Let A be an $E P r$ matrix. Then by Theorem 1.2 there exist a unitary matrix U and a nonsingular matrix D of order r such that

$$
A=U\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] U^{*} \quad \text { and hence } A^{\dagger}=U\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Now

$$
A A^{\dagger}=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Let $T \in E \operatorname{Pr}(A)$. Then by Theorem 2.1,
$T^{*} T A A^{\dagger}=A A^{\dagger} T^{*} T$. That is,

$$
T^{*} T U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*}=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*} T^{*} T .
$$

Pre and post-multiplication by U^{*} and U respectively, yields

$$
U^{*} T^{*} T U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*} T^{*} T U .
$$

This shows that $(T U)^{*}(T U)$ commutes with $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$.
Hence

$$
(T U)^{*}(T U)=\left[\begin{array}{cc}
K & 0 \\
0 & L
\end{array}\right]
$$

where K and L are Hermitian matrices of order r and $n-r$ respectively.

REMARK 2.5. In the above theorem if the unitary matrix U corresponding to the unitarily similarity of $T^{*} T$ is that of unitary matrix associated with A, then the converse holds.

COROLLARY 2.6. Let A be an $E P r$ matrix. Then $\operatorname{EPr}(A)=$ $C(A)$.

Proof. By Lemma 1 of [4], $T \in C(A)$ if and only if $T^{*} T$ commutes with both $A A^{\dagger}$ and $A^{\dagger} A$. In particular if A is $E P$, then $T \in C(A)$ if and only if $T^{*} T$ commutes with $A A^{\dagger}$. Hence by Theorem 2.1, for a given $E P r$ matrix $A, T \in E \operatorname{Pr}(A)$ if and only if $T \in C(A)$ hence $E \operatorname{Pr}(A)=C(A)$.

REMARK 2.7. If A is $E P$, then $U A U^{-1}$ is $E P$ for every $U \in$ $S U(n, \mathbb{C})$, the group of invertible scalar multiples of unitary matrix. Hence $S U(n, \mathbb{C}) \subseteq E \operatorname{Pr}(A) \subseteq G L(n, \mathbb{C})$.

3. Range Hermitizable Matrices

DEFINITION 3.1. A square matrix A of order n is said to be range-Hermitizable, if there exists a $T \in G L(n, \mathbb{C})$ such that $T A T^{-1}$ is range-Hermitian.

It is clear that every range-Hermitian matrix is range-Hermitizable. Thus the class of range-Hermitizable matrices is a generalization of the class of range-Hermitian matrices.

THEOREM 3.2. A matrix A is range-Hermitizable by $T \in$ $G L(n, \mathbb{C})$ if and only if $R\left(A^{*}\right)=R\left(T^{*} T A\right)$.

Proof. This can be proved by the similar argument given in Theorem 2.1 and hence omitted.

COROLLARY 3.3. A is range-Hermitizable by a $T \in G L(n, \mathbb{C})$ if and only if it range-Hermitizable by a $P \in H P(n, \mathbb{C})$, the set of Hermitian positive definite matrices.

Proof. Let A be range-Hermitizable by $T \in G L(n, \mathbb{C})$. Then $B=$ $T A T^{-1}$ is $E P$. Now $A=T^{-1} B T=\left(T^{-1} B T^{-1 *}\right)\left(T^{*} T\right)=C Q$. Since B is $E P$, by Theorem 1.1, $T^{-1} B T^{-1 *}=C$ is $E P$. Again $A=C Q$ implies that $Q^{1 / 2} A Q^{-1 / 2}=Q^{1 / 2} C Q^{1 / 2}$. As C is $E P$, by Theorem 1.1, $Q^{1 / 2} C Q^{1 / 2}$ is also $E P$. Thus $Q^{1 / 2} A Q^{-1 / 2}=P A P^{-1}$ is $E P$, where $Q^{1 / 2}=P>0$, and hence A is range-Hermitizable by $P \in H P(n, \mathbb{C})$. The converse is clear.

REMARK 3.4. In general, A is range-Hermitizable need not imply that A is $E P$. For example, let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right] \quad \text { and } T=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

Then

$$
T A T^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

is $E P$. Thus A is range-Hermitizable by T but A is not $E P$.
The following theorem gives a necessary and sufficient condition for a range-Hermitizable matrix to be range-Hermitian.

THEOREM 3.5. Let A be range-Hermitizable by $T \in G L(n, \mathbb{C})$. Then A is EP if and only if $T^{*} T A A^{\dagger}=A A^{\dagger} T^{*} T$.

Proof. Let $T \in G L(n, \mathbb{C})$ be such that $T A T^{-1}$ is $E P$. The result automatically holds for any $T \in S U(n, \mathbb{C})$. For, if $T=\alpha U$ for some non-zero scalar α and unitary U, then $T A T^{-1}=|\alpha|^{2} U A U^{*}$ is $E P$. Therefore A is $E P$ and $T^{*} T=|\alpha|^{2} I$ commutes with $A A^{\dagger}$. Hence let us assume that $T \notin S U(n, \mathbb{C})$ which implies that $T^{*} T \neq \alpha I$ for any complex scalar α. Now $T A T^{-1}$ is $E P$ and by Theorem 3.2 we get that $R\left(A^{*}\right)=R\left(T^{*} T A\right)$.

We have that

$$
\begin{aligned}
A \text { is } E P & \Leftrightarrow R(A)=R\left(A^{*}\right) \\
& \Leftrightarrow R(A)=R\left(T^{*} T A\right) \\
& \Leftrightarrow T^{*} T A A^{\dagger}=A A^{\dagger} T^{*} T, \text { by Theorem 1.3. }
\end{aligned}
$$

Now Theorems 2.1, 3.2 and 3.5 can be combined as follows.

THEOREM 3.6. Let A be any $n \times n$ matrix and $T \in G L(n, \mathbb{C})$. Then the following are equivalent:
(i) A is $E P$ and $T \in C(A)$;
(ii) A is $E P$ and $T \in E \operatorname{Pr}(A)$;
(iii) A is range-Hermitizable by T and $T^{*} T A A^{\dagger}=A A^{\dagger} T^{*} T$;
(iv) $R\left(A^{*}\right)=R\left(T^{*} T A\right)$ and $T^{*} T A A^{\dagger}=A A^{\dagger} T^{*} T$.

REFERENCES

[1] Ben Israel, A. and Greville, T. N. E. Generalized Inverses: Theory and Applications, Wiley, New York (1974).
[2] Baskett, T. S. and Katz, I. J. Theorems on products of EPr matrices, Linear Algebra Appl. 2:87-103 (1969).
[3] Pomner, C. and Kliem, W. Simultaneously normalizable matrices, Linear Algebra Appl. 94:113-125 (1987).
[4] Robinson, D. W. On the covariance of the Moore-Penrose Inverse, Linear Algebra Appl. 61:91-99 (1984).
[5] Zyskind, G. On cannonical forms, non-negative covariance matrices and best and simple least squares estimators in models, Ann. Math. Statist. 38:10921109 (1967).

Department of Mathematics,
S.T. Hindu College,

Nagercoil-629 002,
Tamil Nadu, INDIA.

Department of Mathematics,
Manonmaniam Sundaranar University,
Tirunelveli 627 012,
Tamil Nadu, INDIA.
E-mail : tamche_59@yahoo.co.in

[^0]: Received March 5, 2007. Revised September 6, 2007.
 2000 Mathematics Subject Classification: 15A09, 15A24.
 Key words and phrases: EP matrices, simiarity invariants.
 *Corresponding author.

