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ON SIMILARITY INVARIANTS OF EP MATRICES

C. Rajian and T. Tamizh Chelvam*

Abstract. We describe the class of invertible matrices T such
that TAT−1 is EPr , for a given EPr matrix A of order n. Neces-
sary and sufficient condition is determined for TAT−1 to be EP
for an arbitrary matrix A of order n.

1. Introduction

All matrices considered here are matrices over the complex field C.
In general, the class of EPr matrices is not similarity invariant under
GL(n, C), the group of invertible n × n matrices. This means that,
for A ∈ EPr and T ∈ GL(n, C),TAT−1 need not be EPr . Hence
the following questions arise: (i) Given an EPr matrix A of order n,
(r < n) for which invertible T,TAT−1 is EPr? (ii) Given an arbitrary
matrix A of order n, is TAT−1 EP for some T ∈ GL(n, C)?

In this paper, for a given EPr matrix A, we characterize the set
of all invertible T such that TAT−1 is EPr . Specifically, we describe
the class EPr(A) = {T ∈ GL(n, C) : TAT−1 is EPr}. For a matrix
A of order n, A∗ denotes conjugate transpose of A. In [4] Donald
W. Robinson has given the description of the class C(A) = {T ∈
GL(n, C) : (TAT−1)† = TA†T−1}, for a given square matrix A, where
A† is the Moore–Penrose inverse of A, the unique solution of the equa-
tions AXA = A,XAX = X, (AX)∗ = AX and (XA)∗ = XA. It is
shown that for a given EPr matrix A,EPr(A) = C(A) and the struc-
ture of each element of EPr(A) is determined. Further a necessary
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and sufficient condition is obtained for a square matrix to be range
Hermitiable by a T ∈ GL(n, C).

A matrix A is called EP or range-Hermitian if R(A) = R(A∗),
where R(X) denotes the range space of X. An EP matrix of rank r is
called EPr matrix. We shall assume familiarity with the basic theory
of Moore–Penrose inverse as given in [1]. In the sequel we shall make
use of the following known results.

THEOREM 1.1. Let A be an n × n matrix and T ∈ GL(n, C).
Then A is EP if and only if T ∗AT is EP.

THEOREM 1.2. Let A be an n × n matrix. Then
(i) A is an EPr matrix if and only if there is a unitary matrix U and
a nonsingular r × r matrix D such that

A = U

[
D 0
0 0

]
U∗

(ii) A is EP if and only if A† is a polynomial in A [1, p. 173]
(iii) A is EP if and only if AA† = A†A.

THEOREM 1.3. Let N be an n×n Hermitian matrix and A be
any n× n matrix, then R(NA) ⊆ R(A) if and only if NAA† = AA†N .

2. Main Results

THEOREM 2.1. Let A be an EPr matrix and T ∈ GL(n, C).
Then T ∈ EPr(A) if and only if T ∗T commutes with AA†.

Proof. Assume that T ∈ EPr(A). Since A is an EPr matrix,
R(A) = R(A∗) and T ∈ EPr(A), implies that TAT−1 is EPr . By
Theorem 1.1, T ∗TA is EPr . Hence, R(T ∗TA) = R(A∗T ∗T ) = R(A∗) =
R(A). This implies that R(T ∗TA) ⊆ R(A). Hence by Theorem 1.3,
T ∗TAA† = AA†T ∗T . Each step is reversible and so the converse
holds.

COROLLARY 2.2. If A and B are two EPr matrices such that
R(A) = R(B), then EPr(A) = EPr(B) = EPr(AB).
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Proof. Since R(A) = R(B),AA† = BB †, hence by Theorem 2.1,
EPr(A) = EPr(B). Further A and B are EPr matrices such that
R(A) = R(B), by Theorem 3 of [2] it follows that AB is EPr ma-
trix and hence R(AB)=R(A) = R(B) and EPr(AB) = EPr(A) =
EPr(B).

REMARK 2.3. We note that for a given EPr matrix A, the set
BA = {B |B an EPr matrix with R(B) = R(A)} characterized in [2],
has the property that EPr(A) = EPr(X) for each element X in BA.

THEOREM 2.4. Let A be an EPr matrix and T ∈ EPr(A).
Then T ∗T is unitarily similar to a block Hermitian matrix[

K 0
0 L

]
,

where K is of order r × r and L is of order (n − r) × (n − r).

Proof. Let A be an EPr matrix. Then by Theorem 1.2 there exist
a unitary matrix U and a nonsingular matrix D of order r such that

A = U

[
D 0
0 0

]
U∗ and hence A† = U

[
D−1 0
0 0

]
U∗.

Now

AA† = U

[
Ir 0
0 0

]
U∗.

Let T ∈ EPr(A). Then by Theorem 2.1,
T ∗TAA† = AA†T ∗T . That is,

T ∗TU

[
Ir 0
0 0

]
U∗ = U

[
Ir 0
0 0

]
U∗T ∗T.

Pre and post-multiplication by U∗ and U respectively, yields

U∗T ∗TU

[
Ir 0
0 0

]
=

[
Ir 0
0 0

]
U∗T ∗TU .

This shows that (TU )∗(TU ) commutes with

[
Ir 0
0 0

]
.

Hence

(TU )∗(TU ) =

[
K 0
0 L

]
,
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where K and L are Hermitian matrices of order r and n−r respectively.

REMARK 2.5. In the above theorem if the unitary matrix U
corresponding to the unitarily similarity of T ∗T is that of unitary
matrix associated with A, then the converse holds.

COROLLARY 2.6. Let A be an EPr matrix. Then EPr(A) =
C(A).

Proof. By Lemma 1 of [4], T ∈ C(A) if and only if T ∗T commutes
with both AA† and A†A. In particular if A is EP , then T ∈ C(A)
if and only if T ∗T commutes with AA†. Hence by Theorem 2.1, for
a given EPr matrix A, T ∈ EPr(A) if and only if T ∈ C(A) hence
EPr(A) = C(A).

REMARK 2.7. If A is EP , then UAU−1 is EP for every U ∈
SU(n, C), the group of invertible scalar multiples of unitary matrix.
Hence SU(n, C) ⊆ EPr(A) ⊆ GL(n, C).

3. Range Hermitizable Matrices

DEFINITION 3.1. A square matrix A of order n is said to be
range -Hermitizable, if there exists a T ∈ GL(n, C) such that TAT−1

is range-Hermitian.

It is clear that every range-Hermitian matrix is range-Hermitizable.
Thus the class of range-Hermitizable matrices is a generalization of the
class of range-Hermitian matrices.

THEOREM 3.2. A matrix A is range-Hermitizable by T ∈
GL(n, C) if and only if R(A∗) = R(T ∗TA).

Proof. This can be proved by the similar argument given in Theo-
rem 2.1 and hence omitted.

COROLLARY 3.3. A is range-Hermitizable by a T ∈ GL(n, C)
if and only if it is range-Hermitizable by a P ∈ HP (n, C), the set of
Hermitian positive definite matrices.
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Proof. Let A be range-Hermitizable by T ∈ GL(n, C). Then B =
TAT−1 is EP . Now A = T−1BT = (T−1BT−1∗)(T ∗T ) = CQ . Since
B is EP , by Theorem 1.1, T−1BT−1∗ = C is EP . Again A = CQ
implies that Q1/2AQ−1/2 = Q1/2CQ1/2. As C is EP , by Theorem 1.1,
Q1/2CQ1/2 is also EP . Thus Q1/2AQ−1/2 = PAP−1 is EP , where
Q1/2 = P > 0, and hence A is range-Hermitizable by P ∈ HP (n, C).
The converse is clear.

REMARK 3.4. In general, A is range-Hermitizable need not
imply that A is EP . For example, let

A =

[
0 1
0 2

]
and T =

[
1 0
−1 1

]
.

Then

TAT−1 =

[
1 0
−1 1

] [
0 1
0 2

] [
1 0
1 1

]
=

[
1 1
1 1

]
is EP . Thus A is range-Hermitizable by T but A is not EP .

The following theorem gives a necessary and sufficient condition for
a range-Hermitizable matrix to be range-Hermitian.

THEOREM 3.5. Let A be range-Hermitizable by T ∈ GL(n, C).
Then A is EP if and only if T ∗TAA† = AA†T ∗T .

Proof. Let T ∈ GL(n, C) be such that TAT−1 is EP . The result
automatically holds for any T ∈ SU (n, C). For, if T = αU for some
non-zero scalar α and unitary U , then TAT−1 = |α|2UAU ∗ is EP .
Therefore A is EP and T ∗T = |α|2I commutes with AA†. Hence let
us assume that T /∈ SU(n, C) which implies that T ∗T ̸= αI for any
complex scalar α. Now TAT−1 is EP and by Theorem 3.2 we get that
R(A∗) = R(T ∗TA).

We have that

A is EP ⇔ R(A) = R(A∗)

⇔ R(A) = R(T ∗TA)

⇔ T ∗TAA† = AA†T ∗T, by Theorem 1.3.

Now Theorems 2.1, 3.2 and 3.5 can be combined as follows.
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THEOREM 3.6. Let A be any n×n matrix and T ∈ GL(n, C).
Then the following are equivalent:

(i) A is EP and T ∈ C(A);
(ii) A is EP and T ∈ EPr(A);
(iii) A is range-Hermitizable by T and T ∗TAA† = AA†T ∗T ;
(iv) R(A∗) = R(T ∗TA) and T ∗TAA† = AA†T ∗T .
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