• 제목/요약/키워드: SIFT descriptor

검색결과 52건 처리시간 0.021초

차별적인 영상특징들에 적응 가능한 융합구조에 의한 도로상의 물체추적 (Traffic Object Tracking Based on an Adaptive Fusion Framework for Discriminative Attributes)

  • 김삼용;오세영
    • 전자공학회논문지SC
    • /
    • 제43권5호
    • /
    • pp.1-9
    • /
    • 2006
  • 대부분의 영상을 이용한 물체추적은 적용환경을 단순화하거나 특정한 영상특징만을 적용할 수 있는 제한된 환경에서 잘 동작하기 때문에 이러한 물체추적방법은 지능자동차의 운전자보조시스템이 적용되는 복잡하고 동적인 교통 환경에서 원하는 물체를 추적하기는 어렵다. 이와 같은 물체간의 부분적인 교합이 존재하고 배경과 물체들이 동시에 동적으로 변하는 복잡한 환경에서는 물체의 색상, 외관, 외형 등과 같은 다양한 영상특징들을 적절하게 융합할 수 있는 구조가 요구된다. 본 논문에서는 기존의 파티클 필터를 이용한 적응형 융합구조[1]와 SIFT[2]를 이용한 영상특징 기술자를 강인한 영상특징으로 사용하고 시점 배경의 동적인 변화에 적응할 수 있도록 학습함으로써 추적의 강건성과 적응성을 향상시킨다. 제안된 알고리듬은 운전자 보조 시스템에서의 차량, 보행자, 자전거와 같은 도로상의 물체추적에 적용하였다.

방향성 특징 기술자를 이용한 식물 잎 인식 (Plant leaf Classification Using Orientation Feature Descriptions)

  • 강수명;윤상민;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.300-311
    • /
    • 2014
  • 환경의 변화에 따라 급속도로 변화하는 생태계에 대한 체계적인 연구를 위해 식물의 정보를 수집 분석하기 위한 연구가 활발하게 진행되고 있다. 특히, 스마트 기기의 카메라를 이용하여 언제 어디서나 사용자가 원하는 식물의 종류를 검색할 수 있는 기술에 대한 관심이 증가하고 있다. 본 논문은 식물 인식 및 생태계 분석을 위해 다양한 식물의 잎을 종류별로 분석할 수 있는 방법에 대해 제안한다. 이를 위해, 카메라부터 입력된 식물 잎 사진의 관심 영역을 GrabCut을 통해 배경과 분리한 후, 형태 기술자 추출 방법인 SIFT(Scale-Invariant Feature Transform), HOG(Histogram of Oriented Gradient)를 이용하여 형태 기술자를 추출하고, 이것을 부호화 기법 및 공간 피라미드 방법을 이용한 분류 특징 벡터를 만든다. SVM(Support Vector Machine)을 통한 식물 잎 분류 및 인식한다. 다양한 식물 잎에 대한 실험 결과를 통해 비슷한 색상이나 형태를 가지고 있더라도 방향성 특징 기술자를 활용한 식물 잎 분류 방법이 매우 효율적임을 알 수 있다.

위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법 (Improving Matching Performance of SURF Using Color and Relative Position)

  • 이경승;김대훈;노승민;황인준
    • 한국항행학회논문지
    • /
    • 제16권2호
    • /
    • pp.394-400
    • /
    • 2012
  • SURF(Speeded Up Robust Features)는 다양한 상태 변화에 강인한 기술자 추출 방법으로 객체 인식과 같은 분야에서 유용하게 사용되는 알고리즘이다. 이 알고리즘은 대표적인 특징점 추출 알고리즘인 SIFT(Scale Invariant Feature Transform)와 비슷한 성능을 보이면서도 수행 시간이 훨씬 빠르다는 장점이 있다. 하지만 이러한 기술자들은 회전 불변한 특징 보장을 위해서, 추출한 특징점 간의 위치 정보를 고려하지 않는다. 또한, 원본 영상을 흑백 영상으로 변환하여 사용하기 때문에, 원본 이미지의 색상 정보도 이용하지 않는다. 본 논문에서는 특징점들 간의 상대적인 위치 정보 및 색상 정보를 이용하여 SURF 기술자의 정합 성능을 개선하는 방안을 제안한다. 상대적인 위치 정보는 특징점들의 중심을 연결하는 선분과 특징점 중심에서부터 생성되는 orientation 선분 사이의 각을 기반으로 한다. 색상 정보의 경우 각 특징점이 포함하고 있는 영역에 대해 color histogram을 생성하여 사용한다. 실험을 통하여 제안된 기법의 성능 개선을 보인다.

Visual Servoing을 위한 3차원 물체의 인식 및 자세 추정 (Recognition and Pose Estimation of 3-D Objects for Visual Servoing)

  • 양재호;정문호;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1931-1932
    • /
    • 2006
  • 로봇이 어떤 물체를 인지하고 그 물체에 대해 어떤 작업을 하고자 할 때 특정 물체의 인식 문제, 3차원 정보를 획득하는 문제, 자세를 추정하는 문제 등 해결해야 될 문제들이 있다. 물체를 인식하는 과정에서는 주위 배경과 물체의 크기의 변화, 회전, 가려짐 등으로 인해 물체 인식을 어렵게 만드는 요소들이 있다. 2차원 이미지를 통해 3차원 정보를 추출하는 과정은 일반적으로 두 대의 카메라를 이용하여 스테레오 이미지를 통해 얻는다. 이 때 좌우 영상간의 매칭의 과정이 필요하다. 자세 추정의 문제는 카메라 좌표와 물체의 좌표간의 관계를 알아야 한다. Visual Servoing을 어렵게 만드는 많은 요인들이 있으며 본 논문에서는 물체의 크기, 회전, 이동에 불변인 디스크립터(descriptor)를 사용하는 SIFT(Scale Invariant Feature Transform)를 통해 3차원 물체의 인식과 자세를 추정하는 방법을 제시한다. 또한 자세 추정을 위해 2차원 Keypoint들의 매칭을 3차원 정보를 통해 검증하는 방법을 제시한다. (SIFT에 의해 추출된 point를 Keypoint라 명한다.)

  • PDF

Pan-sharpening Effect in Spatial Feature Extraction

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.359-367
    • /
    • 2011
  • A suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. The research on pan-sharpening algorithm in improving the accuracy of image classification has been reported. For a classification, preserving the spectral information is important. Other applications such as road detection depend on a sharp and detailed display of the scene. Various criteria applied to scenes with different characteristics should be used to compare the pan-sharpening methods. The pan-sharpening methods in our research comprise rather common techniques like Brovey, IHS(Intensity Hue Saturation) transform, and PCA(Principal Component Analysis), and more complex approaches, including wavelet transformation. The extraction of matching pairs was performed through SIFT descriptor and Canny edge detector. The experiments showed that pan-sharpening techniques for spatial enhancement were effective for extracting point and linear features. As a result of the validation it clearly emphasized that a suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. In future it is necessary to design hybrid pan-sharpening for the updating of features and land-use class of a map.

Video Representation via Fusion of Static and Motion Features Applied to Human Activity Recognition

  • Arif, Sheeraz;Wang, Jing;Fei, Zesong;Hussain, Fida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3599-3619
    • /
    • 2019
  • In human activity recognition system both static and motion information play crucial role for efficient and competitive results. Most of the existing methods are insufficient to extract video features and unable to investigate the level of contribution of both (Static and Motion) components. Our work highlights this problem and proposes Static-Motion fused features descriptor (SMFD), which intelligently leverages both static and motion features in the form of descriptor. First, static features are learned by two-stream 3D convolutional neural network. Second, trajectories are extracted by tracking key points and only those trajectories have been selected which are located in central region of the original video frame in order to to reduce irrelevant background trajectories as well computational complexity. Then, shape and motion descriptors are obtained along with key points by using SIFT flow. Next, cholesky transformation is introduced to fuse static and motion feature vectors to guarantee the equal contribution of all descriptors. Finally, Long Short-Term Memory (LSTM) network is utilized to discover long-term temporal dependencies and final prediction. To confirm the effectiveness of the proposed approach, extensive experiments have been conducted on three well-known datasets i.e. UCF101, HMDB51 and YouTube. Findings shows that the resulting recognition system is on par with state-of-the-art methods.

인공위성 영상의 객체인식을 위한 영상 특징 분석 (Feature-based Image Analysis for Object Recognition on Satellite Photograph)

  • 이석준;정순기
    • 한국HCI학회논문지
    • /
    • 제2권2호
    • /
    • pp.35-43
    • /
    • 2007
  • 본 논문은 특징검출(feature detection)과 특징해석(feature description) 기법을 이용하여, 영상 매칭 (matching)과 인식(recognition)에 필요한 다양한 파라미터의 변화에 따른 인식률의 차이를 분석하기 위한 실험 내용을 다룬다. 본 논문에서는 영상의 특징분석과 매칭프로세스를 위해, Lowe의 SIFT(Scale-Invariant Transform Feature)를 이용하며, 영상에서 나타나는 특징을 검출하고 해석하여 특징 데이터베이스로 구축한다. 특징 데이터베이스는 구글 어스를 통해 획득한 위성영상으로부터 50여개 건물에 대해 구축되는데, 이는 각 건물 영상으로부터 추출된 특징 점들의 좌표와 128차원의 벡터의 값으로 이루어진 특징 해석데이터로 저장된다. 구축된 데이터베이스는 각 건물에 대한 정보가 태그의 형식으로 함께 저장되는데, 이는 카메라로부터 획득한 입력영상과의 비교를 통해 입력영상이 가리키는 지역 내에 존재하는 건물에 대한 정보를 제공하는 역할을 한다. 실험은 영상 매칭과 인식과정에서 작용하는 내-외부적 요소들을 제시하고, 각 요소의 상태변화에 따라 인식률의 차이를 비교하는 방법으로 진행되었으며, 본 연구의 최종적인 시스템은 모바일기기의 카메라를 이용하여 카메라가 촬영하고 있는 지도상의 객체를 인식하고, 해당 객체에 대한 기본적인 정보를 제공할 수 있다.

  • PDF

효과적인 증강현실 구현을 위한 특징점 분석 기반의 마커영상 평가 방법 (Evaluation of Marker Images based on Analysis of Feature Points for Effective Augmented Reality)

  • 이진영;김종호
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.49-55
    • /
    • 2019
  • 본 논문에서는 효과적인 마커기반의 증강현실 구현을 위하여 영상 내 객체의 분포에 대한 분석과 반복 패턴을 포함하는 영상의 분류를 통한 마커영상의 평가 방법을 제안한다. 객체의 분포는 영상의 부분적 가림 현상에 따라 객체추적성능에 영향을 미치기 때문에 특징점 좌표의 분산을 이용하여 가림 현상에 취약한 마커영상을 구분할 수 있도록 하였고, 일반 영상과 반복 패턴을 포함하는 영상의 특징점 기술자 벡터의 분포가 현저하게 다르다는 사실에 기반하여 객체의 인식 및 추적에 적합한 영상을 구분할 수 있는 방법을 제안한다. 다양한 실험 결과 제안하는 마커 평가 방법이 가림 현상에 취약한 영상 및 반복 패턴 영상을 구분하는데 우수한 성능을 보이는 것을 확인하였다. 또한 마커영상에 대한 객체 추적 등의 안정성 측면에서 SURF보다 SIFT 기법이 우수한 성능을 보임을 확인할 수 있었다. 이러한 결과를 이용하여 다양한 종류의 마커영상에 대한 적합성 정보를 사용자에게 제공함으로써 효과적인 증강현실 시스템을 구현할 수 있을 것으로 판단된다.

번호판 영역 검출을 위한 지역특징 분류 방법 (Local Descriptor Classification Method for License Plate Detection)

  • 홍원주;김민우;오일석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.466-468
    • /
    • 2011
  • 본 논문은 영상 획득 환경이 자유로운 상황에서 차량 번호판 영역을 검출하기 위한 새로운 방법을 제안한다. 입력 영상에서 SIFT 지역특징을 추출하고 미리 학습한 분류기를 통해 각 지역특징이 번호판 내부에 속하는지 번호판 외부에 속하는지를 분류한다. 번호판 내부로 분류된 지역특징이 밀집한 영역이 번호판 영역으로 검출된다. 실험을 통해 제안하는 지역특징 분류 방법이 높은 성능으로 번호판 내/외부를 분류함을 보인다.

히스토그램 평활화를 이용한 조명변화에 강인한 영상 매칭 (Illumination invariant image matching using histogram equalization)

  • 오창범;강민성;손광훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.161-164
    • /
    • 2011
  • 영상 매칭은 컴퓨터 비전에서 기초적인 기술로써 영상 추적, 물체인식 등 다양한 분양에서 많이 사용되고 있다. 하지만 스케일, 시점변화, 조명 변화에 강인한 매칭점을 찾는 것은 어려운 일이다. 이러한 문제점을 보완하기 위해 SURF(Scale Invariant Feature Transform), SIFT(Speed up Robust Features) 등의 알고리즘이 제안 되었지만, 여전히 조명변화에 불안정하고 정확하지 못한 성능을 보인다. 본 논문에서는 이러한 조명변화에 대한 문제점을 해결하기 위해 히스토그램 평활화를 이용하여 영상을 보정 후, SURF를 통한 영상 매칭을 하였다. 열악한 조명환경 내에서 촬영된 영상에서 SURF를 이용하여 표현자(Descriptor)를 생성 할 때 특징점이 잘 추출되지 않는 문제점을 해결하기 위하여 히스토그램 평활화를 이용하였고, 보정 후 특징점 개수가 많이 증가하는 것을 보여 확인하였다. 기존의 SURF와 개량된 SURF를 조명이 서로 다른 영상간의 매칭 성능을 비교함으로써 제안한 알고리즘의 우수성을 확인하였다

  • PDF