• Title/Summary/Keyword: SEM-EDX analysis

Search Result 306, Processing Time 0.034 seconds

Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis (FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.

Evaluation on Welding Characteristic of Ni-Cu Sheet by Ultrasonic Machining (초음파 가공에 의한 Ni-Cu 박판의 용착 특성 평가)

  • Back, Si-Young;Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper is studied on the influence of machining conditions on weldability obtained by ultrasonic machining. The weldability estimation of dissimilar Ni-Cu sheets with the optimization of one-wavelength horn is confirmed by the use of ultrasonic machining. The optimal welding condition with tensile test by setting the ultrasonic machining parameters is suggested and the weldability is estimated by SEM observation and EDX-ray analysis. Experimental studies are worked with the measure of tensile strength and the analysis of SEM photograph after the ultrasonic machining of workpiece. Machining parameters of machining time, pressure, and amplitude are also applied to this paper.

Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

  • Kokolis, John;Chakmakchi, Makdad;Theocharopoulos, Antonios;Prombonas, Anthony;Zinelis, Spiros
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSE. The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS. Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a $45^{\circ}$ bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (${\varepsilon}$) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (${\alpha}$=.05) and Weibull analysis where Weibull modulus m and characteristic strength ${\sigma}_0$ were identified. Fractured surfaces were imaged by a SEM. RESULTS. SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ${\varepsilon}$, m and ${\sigma}_0$) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION. The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability.

Physicochemical Characteristics of Single Asian Dust Storm Particles

  • Ma, Chang-Jin;Mikio kasahara;Hwang, kyung-Chul;Park, Kum-Chan;Park, Seong-Boo;Lee, Jeong-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E
    • /
    • pp.29-38
    • /
    • 2000
  • For the detailed characterization of atmospheric aerosol, the analysis of single particle is highly valuable. In this study, to investigate the characteristics of single Asian dust storm particles, scanning electron microscope(SEM) coupled with and energy dispersive X-ray microanalyzer(EDX) and micro-PIXE were applied. Sampling was performed at Kyoto University located in Kyoto, Japan, in spring of 1999. Mass concentration during Asian dust storm events was higher roughly 3∼5 times than measured in the season of the highest concentration. Single particles were generally sharp-edged and irregular in shape and contained mostly crustal elements. Significant amount of S in coarse fraction was detected in individual particles. A large particles in coarse fraction existed as the mixture of soil components and S. A good agreement between the result of SEM-EDX analysis and that iof micro-PIXE analysis was obtained in this study.

  • PDF

Analysis of rifle and pistol primer gunshot residue using SEM-EDX (SEM-EDX에 의한 소총과 권총의 뇌관화약잔사 분석)

  • Jeon, Chung-Hyun;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.322-329
    • /
    • 2010
  • Primer gunsot residues (GSR) obtained from K1A and K2 rifles, and K5 pistol were analysed with scanning electron microscopy/energy dispersive X-ray spectrometry (SEM-EDX) as basic data in firearm accidents. Ammunition of 5.56 mm is employed for K1A and K2 rifles and 9.0 mm for a K5 pistol. The analyses of morphology, size, particle number, elemental ratio were performed for primer GSR prepared after shooting 3 times. The detected content was Ba>Pb>Sb in most GSR particles but Sb>Pb>Ba or Pb>Sb>Ba in some particles. In the statistical result of composition ratio of elements, the particles with more Sb than Ba were detected in most primer GSR from a K5 pistol, 3~8 times more than K1A and K2 rifles. This results can be employed to discriminate gun type between rifles and pistols. Furthermore, the size and the number of particles can be applied to access the type of guns.

Development of Source Profiles for Asbestos and Non-asbestos Fibers by SEM/EDX (SEM/EDX를 이용한 석면 및 비석명의 오염원분류표 개발)

  • Choi, Young-A;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.718-726
    • /
    • 2007
  • There are many varieties of asbestos: chrysotile, crocidolite, amosite, tremolite, actinolite, and anthophylite. These are widely used in construction materials, brake lining, textile, and so on. Even though non-asbestos fibers such as glassfiber and rockwool have manufactured because asbestos causes asbestosis, lung cancer, mesothelioma, etc., some bad effects of non-asbestos have been also reported. PCM (phase contrast microscopy) and PLM (polarized light microscopy) have been used to qualitatively analyze asbestoses. These techniques have serious drawbacks when identifying and separating various asbestoses. Recently scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) has been known as an useful tool to analyze airborne particle since it provides physical and chemical information simultaneously. The purpose of the study was to classify both asbestos and non-asbestos fibers and finally to develop their source profiles by using the SEM/EDX. The source profiles characterized by 6 different types of asbestos fibers and 2 types of non-asbestos fibers had been developed by analyzing a total of 380 fibers. Analytical parameters used in this study were length, width, aspect ratio, and shape as physical information, and Na, Mg, Al, Si, K, Ca, Cr, Mn, Fe, and Cu as chemical information. All the parameters were intensively reviewed.

A Study on Identification of Source Using SEM-EDX by Analysis of shape and chemical composition in individual Particles (SEM-EDX법을 이용한 개별입자의 형상과 화학적 조성 분석을 통한 발생원 추정에 관한 연구)

  • 염해진;전보경;최금찬
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.320-321
    • /
    • 2003
  • 대기중에 존재하는 입자상물질은 광범위한 입경역에 걸쳐서 다종다양한 미량화학성분으로 구성되는 분산체이고, 그 성상은 공간적으로도 시간적으로도 크게 변동한다. 입자상 물질의 화학분석법은 발생원 동정을 위한 자료로 적합하며 일반적으로는 습식의 파괴적인 원소분석으로 하는 경우가 많다. 일반적으로 화학적 분석법은 개별입자의 정보가 무시되며 필터에 포집된 bulk 시료에 의한 분석이 진행되므로 장시간 포집에 의한 단시간의 시간변동과 개개의 입자가 가지는 정보가 무시되고 평균화 되어버린다. (중략)

  • PDF

Individual Particle Analysis of Yellow Sands by SEM/EDX (SEM/EDX를 이용한 황사의 입자별 분석)

  • 강승우;김동술
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.309-310
    • /
    • 1999
  • Loess (黃土)는 지구의 10 %를 차지하고 있으며, 황사 (黃砂)폭풍으로 장거리이동이 가능하여 동아시아까지 이동할 수 있다 (Zhang De'er, 1982). 황사현상은 최근 동북아시아에서 급속한 산업발달과 인구증가, 그리고 생활수준의 향상에 따라 많은 양의 오염물질이 대기로 방출되고 있다. 특히 중국이 이 지역에서 배출되는 대기오염물질의 대부분을 배출하고 있다 (국립환경 연구원, 1998).(중략)

  • PDF

A Study on the Short-Circuit Characteristics of Vinyl Cords Damaged by External Flame (외부화염에 의해 소손된 비닐 코드의 단락 특성에 관한 연구)

  • Choi Chung-Seog;Kim Hyang-Kon;Shong Kil-Mok
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.72-77
    • /
    • 2004
  • In this paper, we studied on the short-circuit process, surface structure, and component variation of vinyl cords. In the results of high speed imaging system (HSIS) analysis, as soon as wire covering was damaged by heat, the conductor of wire came in contact with the other conduct of wire, and the short-circuit occurred. Stereomicroscope and SEM analysis indicated that the source part of wire showed V-type form. The molten beads of load part were bigger than those of source part. In the results of EDX analysis, Cu and O were detected in the source part, whereas covering material (Cl, Ca), Cu and O were detected in the load part. The results will help us to find out the cause of electrical fire.