• Title/Summary/Keyword: SE Process

Search Result 2,126, Processing Time 0.028 seconds

Holographic Data Grating Formation of AsGeSeS Single & Ag/AsGeSeS Double Layer Thin Films with the Incident Beam Wavelength (입사빔의 파장에 따른 AsGeSes & Ag/AsGeSes 박막의 홀로그래픽 데이터 소거특성)

  • Koo, Yong-Woon;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1428-1429
    • /
    • 2006
  • We investigated the diffraction efficiency, erasing property and rewriting property of diffraction grating with each wavelength of recording beam. A (P:P) polarized light was exposed on AsGeSeS and Ag/AsGeSeS thin film to form a diffraction grating by HeNe(635nm) laser and DPSS(532nm) laser. At the maximum efficiency condition, unpolarized HeNe laser beam was irradiated to erase 1ha generated diffraction grating. The HeNe laser showed more higher diffraction efficiency and the DPSS laser showed more faster diffraction grating time. At erasing and rewriting process, AsGeSeS(61%-85%)thin film showed better property than Ag doped Ag/AsGeSeS(53%-63%) double layer structured thin film.

  • PDF

Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer (구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가)

  • Lee, Jonghwan;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.94-98
    • /
    • 2020
  • The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.

Photoluminescence of ZnSe/CdSe/ZnSe Single Quantum Well (ZnSe/CdSe/ZnSe 단일양자우물의 광발광 특성)

  • Park, J.G.;O, Byung-Sung;Yu, Y.M.;Yoon, M.Y.;Kim, D.J.;Choi, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.192-196
    • /
    • 2007
  • ZnSe/CdSe/ZnSe single quantum wells with different well thickness were grown by hot wall epitaxy. The quantum well thicknesses were measured by TEM. The critical thickness of single quantum well layer was found to be about $9{\AA}$ from the intensities and the full-width at half maximum of photoluminescence(PL) spectra. When the thickness of quantum wells was less than the critical thickness, the Stoke's shift was confirmed from the comparison between PL and photoluminescence excitation spectra, and it may be due to the exciton binding energy. The PL peak energy dependence on the quantum well thickness was coincident with the theoretical values.

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • $Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.

Se-loss-induced CIS Thin Films in RTA Process after Co-sputtering Using CuSe2 and InSe2 Targets

  • Kim, Nam-Hoon;Jun, Young-Kil;Cho, Geum-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1009-1015
    • /
    • 2014
  • Chalcopyrite $CuInSe_2$ (CIS) thin films were prepared without Se- / S-containing gas by co-sputtering using $CuSe_2$ and $InSe_2$ selenide-targets and rapid thermal annealing. The grain size increased to a maximum of 54.68 nm with a predominant (112) plane. The tetragonal distortion parameter ${\eta}$ decreased and the inter-planar spacing $d_{(112)}$ increased in the RTA-treated CIS thin films annealed at a $400^{\circ}C$, which indicates better crystal quality. The increased carrier concentration of RTA-treated p-type CIS thin films led to a decrease in resistivity due to an increase in Cu composition at annealing temperatures ${\geq}350^{\circ}C$. The optical band gap energy ($E_g$) of CIS thin films decreased to 1.127 eV in RTA-treated CIS thin films annealed at $400^{\circ}C$ due to the improved crystallinity, elevated carrier concentration and decreased In composition.

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds

  • Lin, Chan-Chieh;Ginting, Dianta;Kim, Gareoung;Ahn, Kyunghan;Rhyee, Jong-Soo
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1534-1539
    • /
    • 2018
  • SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.

The Fabrication of the Cu(In,Ga)Se2 Absorber Layer Using Binary Precursor Films Deposited by Chemical Vapor Deposition (화학기상증착된 이원계 화합물 프리커서를 이용한 Cu(In,Ga)Se2 흡수층의 제조)

  • Lee, Gyeong A;Kim, A Hyun;Cho, Sung Wook;Lee, Kang-Yong;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.137-144
    • /
    • 2021
  • In this study, the microstructure of the CVD-fabricated Cu(In,Ga)Se2 (CIGSe) absorber layer by simulating the stacking sequence used in a co-evaporation method, and changes solar cell performance were investigated. The absorber layer prepared by stacking CuSe and (In,Ga)Se between InSe is separated into Ga-free CuInSe2 and Ga-rich CIGSe, and transformed to CIGSe by selenization heat treatment with slight improvement in the the solar cell efficiency. However, in CVD, since the supply of liquid Cu-Se is not as active as in the co-evaporation method, the nanoocrystalline layer containing a large amount of Ga remained independently in the absorption layer, which acted as a cause of the loss of JSC and FF. Therefore, by using a precursor structure in which CuGa is sputter-deposited on a single layer of InSe deposited by CVD, performance parameters of VOC, JSC, and FF could be greatly improved.

A Study on the Systems Engineering Process for Effectively Carrying Out LRT Project (경량전철사업의 효과적인 수행을 위한 시스템엔지니어링프로세스 연구)

  • Han, Seok-Youn;Kim, Joo-Uk;Baek, Jong-Hyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.139-145
    • /
    • 2013
  • Light rail transit(LRT) is a public transportation and mainly has an automatic driverless operation system. LRT project is a large scaled project which a construction cost is tens of billions of won per km. Systems engineering(SE) is an interdisciplinary approach and means to enable realization of successful systems. In this paper, we propose the systems engineering processes and their outputs list for the LRT project. And then, we present template and sample case of process output. We also present a case which carried out SE process by SE tool.

A Process Model for the Systematic Development of Safety-Critical Systems (안전중시 시스템을 위한 체계적인 설계 프로세스에 관한 연구)

  • Yoon, Jae-Han;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • It is becoming more and more important to develop safety-critical systems with special attention. Examples of the safety-critical systems include the mass transportation systems such as high speed trains, airplanes, ships and so forth. Safety critical issues can also exist in the development of atomic power plants that are attracting a great deal of attention recently as oil prices are sky-rocketing. Note that the safety-critical systems are in general large-scale and very complex for which case the effects of adopting the systems engineering (SE) approach has been quite phenomenal. Furthermore, safety-critical requirements should necessarily be realized in the design phase and be effectively maintained thereafter. In light of these comments, we have considered our approach to developing safety-critical systems to be based on the method combining the systems engineering and safety management processes. To do so, we have developed a design environment by constructing a whole life cycle model in two steps. In the first step, the integrated process model was developed by integrating the SE (ISO/IEC 15283) and systems safety (e.g., hazard analysis) activities and implemented in a computer-aided SE tool environment. The model was represented by three hierarchical levels: the life-cycle level, the process level, and the activity level. As a result, one can see from the model when and how the required SE and safety processes have to be carried out concurrently and iterately. Finally, the design environment was verified by the computer simulation.

Study of Configuration Management Using Se Tool (SE 전산지원도구를 이용한 형상관리 방안 연구)

  • Park, Jong-Sun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-56
    • /
    • 2011
  • Configuration management plays a key role in systems engineering process for any project from earlier stage of development. It consists of five major activities, ie., configuration management planing, configuration identification, configuration control, configuration status accounting and configuration verification and audit, and is essential to control system design, development and operation throughout entire life cycle of the system development. And it is directly associated with other part of systems engineering management process, ie., technical data management which provides traceability of important decisions and changes during development. In this paper, we describe how to apply CASE(Computer-aided Systems Engineering) tool-Cradle for the configuration management to achieve effectiveness of Technical Management process.