DOI QR코드

DOI QR Code

Photoluminescence of ZnSe/CdSe/ZnSe Single Quantum Well

ZnSe/CdSe/ZnSe 단일양자우물의 광발광 특성

  • Park, J.G. (Department of Physics, Chungnam National University) ;
  • O, Byung-Sung (Department of Physics, Chungnam National University) ;
  • Yu, Y.M. (Process Innovation Team, National Archives and Records Service) ;
  • Yoon, M.Y. (Department of Information and Communication Engineering, Joongbu University) ;
  • Kim, D.J. (The Institute of Science & Technology, Mokwon University) ;
  • Choi, Y.D. (Department of Optical and Electronic Physics, Mokwon University)
  • 박재규 (충남대학교 물리학과) ;
  • 오병성 (충남대학교 물리학과) ;
  • 유영문 (국가기록원 프로세스혁신팀) ;
  • 윤만영 (중부대학교 정보통신학과) ;
  • 김대중 (목원대학교 테크노과학연구소) ;
  • 최용대 (목원대학교 광전자물리학과)
  • Published : 2007.05.30

Abstract

ZnSe/CdSe/ZnSe single quantum wells with different well thickness were grown by hot wall epitaxy. The quantum well thicknesses were measured by TEM. The critical thickness of single quantum well layer was found to be about $9{\AA}$ from the intensities and the full-width at half maximum of photoluminescence(PL) spectra. When the thickness of quantum wells was less than the critical thickness, the Stoke's shift was confirmed from the comparison between PL and photoluminescence excitation spectra, and it may be due to the exciton binding energy. The PL peak energy dependence on the quantum well thickness was coincident with the theoretical values.

Hot wall epitaxy 방법으로 우물층의 두께를 바꾸어가며 ZnSe/CdSe/ZnSe 단일 양자우물을 성장하였다. 양자우물층의 두께는 TEM을 이용하여 측정하였다. 광발광의 세기와 반치폭의 변화로부터 양자우물층의 임계두께는 약 $9{\AA}$임을 알 수 있었다. 우물층의 두께가 임계두께 보다 작을 때 광발광과 PLE 스펙트럼의 비교로부터 stoke's shift를 확인하였고, 이는 엑시톤 결합 에너지에 의한 것임을 알 수 있었다. 우물층의 두께에 대한 광발광 피크의 에너지 이동은 이론치와 잘 일치하였다.

Keywords

References

  1. S. Venkatachalam, D. Mangalaraj, and S. K. Narayandass, Physica B: Condensed Matter 393, 47 (2007) https://doi.org/10.1016/j.physb.2006.12.047
  2. N. T. Pelekanos, J. Ding, M. Hagerott, and A. V. Nurmikko, Phys. Rev. B 45, 6037 (1992) https://doi.org/10.1103/PhysRevB.45.6037
  3. N. T. Pelekanos, H. Haas, N. Magnea, H. Mariette, and A. Wasiela, Appl. Phys. Lett. 61, 3154 (1992) https://doi.org/10.1063/1.107992
  4. V. Pellegrini, R. Atanasov, A. Tredicucci, and F. Beltram, Phys. Rev. B 51, 5171 (1995) https://doi.org/10.1103/PhysRevB.51.5171
  5. L. M. Hernandez-Ramirez and I. Hernandez- Calderon, Phys. stat. sol. (b) 220, 205 (2000) https://doi.org/10.1002/1521-3951(200007)220:1<205::AID-PSSB205>3.0.CO;2-C
  6. R. Cingolani, P. Prete, D. Greco, P. V. Giugno, M. Lomascolo, and L. Calcagnile, Phys. Rev B, 5176 (1995)
  7. W. Shan, S. J. Hwang, and Z. W. Zhu, J. Appl. Phys. 74, 5699 (1993) https://doi.org/10.1063/1.354185
  8. P. Diaz-Arendibia, I. Hernandez-Calderon, and M. C. Tanargo, Microelectronics Journal 31, 443 (2000) https://doi.org/10.1016/S0026-2692(00)00007-0
  9. J. Ding, H. Jeon, A. V. Nurmikko, H. Luo, and J. K. Furdyna, Appl. Phys. Lett. 57, 2756 (1990) https://doi.org/10.1063/1.103778
  10. M. A. Haase, J. Qiu, J. M. Depuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991) https://doi.org/10.1063/1.105472
  11. H. Jeon, J. Ding, W. Patterson, W. Xie, and R. L. Gunshor, Appl. Phys. Lett. 59, 3619 (1991) https://doi.org/10.1063/1.105625
  12. J. Y. Jen, T. Tsutsumi, I. Souma, Y. Oka, and H. Fujiyasu, Jpn. J. Appl. Phys. 32, L1542 (1993) https://doi.org/10.1143/JJAP.32.L1542
  13. H. J. Lozykowski and V. K. Shastri, J. Appl. Phys. 69, 3235 (1991) https://doi.org/10.1063/1.348543
  14. H. Zajicek, P. Juza, E. Abramof, O. Pankratov, and H. Sitter, Appl. Phys. Lett. 62, 717 (1993) https://doi.org/10.1063/1.109615
  15. O. Madelung, M. Schulz, and H. Weiss, Numerical Data and functional Relationships in science and Technology, Vol 17(Springer-Verlag Berlin․Heidelberg․New York, 1982), p207
  16. M. C. Netti, M. Lepore, A. Adinolfi, R. Tommasi, and I. M. Catalano, J. Appl. Phys. 80, 2908 (1996) https://doi.org/10.1063/1.363144