• 제목/요약/키워드: SDAS

검색결과 19건 처리시간 0.023초

MEMS형 가속도 센서를 이용한 지진 데이터 취득 시스템의 설계 및 구현 (Design and Implementation of Seismic Data Acquisition System using MEMS Accelerometer)

  • 최훈;배현덕
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.851-858
    • /
    • 2012
  • In this paper, we design a seismic data acquisition system(SDAS) and implement it. This system is essential for development of a noble local earthquake disaster preventing system in population center. In the system, we choose a proper MEMS-type triaxial accelerometer as a sensor, and FPGA and ARM processor are used for implementing the system. In the SDAS, each module is realized by Verilog HDL and C Language. We carry out the ModelSim simulation to verify the performances of important modules. The simulation results show that the FPGA-based data acquisition module can guarantee an accurate time-synchronization for the measured data from each axis sensor. Moreover, the FPGA-ARM based embedded technology in system hardware design can reduce the system cost by the integration of data logger, communication sever, and facility control system. To evaluate the data acquisition performance of the SDAS, we perform experiments for real seismic signals with the exciter. Performances comparison between the acquired data of the SDAS and the reference sensor shows that the data acquisition performance of the SDAS is valid.

BaSDAS: a web-based pooled CRISPR-Cas9 knockout screening data analysis system

  • Park, Young-Kyu;Yoon, Byoung-Ha;Park, Seung-Jin;Kim, Byung Kwon;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.46.1-46.4
    • /
    • 2020
  • We developed the BaSDAS (Barcode-Seq Data Analysis System), a GUI-based pooled knockout screening data analysis system, to facilitate the analysis of pooled knockout screen data easily and effectively by researchers with limited bioinformatics skills. The BaSDAS supports the analysis of various pooled screening libraries, including yeast, human, and mouse libraries, and provides many useful statistical and visualization functions with a user-friendly web interface for convenience. We expect that BaSDAS will be a useful tool for the analysis of genome-wide screening data and will support the development of novel drugs based on functional genomics information.

알루미늄 합금 주물의 냉각 속도에 따른 기계적 성질 예측 (Effect of Cooling Rate on the Prediction of Mechanical Properties of Al Alloys)

  • 동권식;조인성;황호영
    • 한국주조공학회지
    • /
    • 제32권5호
    • /
    • pp.225-230
    • /
    • 2012
  • In this study, a more practical and simulation approach which can predict the mechanical properties of aluminum alloys is proposed. First, cooling rate, micro-structure, and mechanical properties of casting product were measured through casting experiment. The relation between cooling rate and SDAS decrease exponentially and the linearly decreasing relation exist between SDAS and mechanical properties. Then, the cooling rate was calculated by casting process simulation and the mechanical properties were predicted by using the relations that were derived through experiment. Experimentally measured mechanical properties and predicted values by simulation were in the range of relatively small difference. The mechanical properties of various Al alloys are expected to be predicted by the casting process simulation before actual casting.

Alloy Wheel용 저압 주조 A356-T6 합금의 기계적 특성 (Mechanical Properties of Low-Pressure Die Cast A356-T6 alloys for Automotive Wheels)

  • 유봉준;김정호;윤형석;어순철
    • 한국주조공학회지
    • /
    • 제34권1호
    • /
    • pp.6-13
    • /
    • 2014
  • The mechanical properties of low-pressure die cast (LPDC) A356-T6 automotive road wheels are evaluated and correlated with their corresponding microstructures. In this study, two types of alloy wheels processed using different LPDC gating system are investigated. The yield stress, tensile stress, and elongation values tested at room temperature are correlated with the secondary dendrite arm spacing (SDAS) with respect to the gating system, and are also compared with similar studies. The SDAS and precipitates are examined using optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The phase information is also investigated using X-ray diffraction. Charpy impact tests are also performed from $-100^{\circ}C$ to $200^{\circ}C$, and the fracture surfaces are examined using SEM. The impact energy is demonstrated to increase with increasing temperatures without exhibiting specific transition behaviors as in other nonferrous alloys. The fracture toughness is also evaluated using three point bend test with single-edged bend specimens. The obtained fracture toughness values are in good agreement with those in similar studies.

저압주조품의 미세조직과 기계적성질에 미치는 금형온도의 영향 (Effect of the Mold Temperatures on the Microstructure and Mechanical Properties of Low Pressure Die-Cast Product)

  • 이정근;박종성;김명호
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.254-261
    • /
    • 1998
  • Microstructure and mechanical properties of the low pressure die-cast Al wheels were investigated by microscope, image analyzer, NDT (non-destructive test), and tensile test. The variation of SDAS (secondary dendrite arm spacing), porosity per unit area, quality grade, and tensile properties with the mold temperatures were examined. SDAS was gradually decreased with a decrease in temperature. However, the lowest value of porosity per unit area was observed at the mold temperature of $405^{\circ}C$ and the optimum mold temperature was found to be $405^{\circ}C$. Besides, from the observation of pore morphology, it was also found that the pore formation was mainly caused by shrinkage during solidification. The tensile strength, elongation, and impact toughness were markedly decreased, however the yield strength was nearly constant. The decrease of mechanical properties is attributed to the increase of porosity.

  • PDF

아공정 Al-Si 합금에서 Si 함량과 냉각속도에 따른 제이차수지상간격의 변화 (Change of Secondary Dendrite Arm Spacing of Hypoeutectic Al-Si Alloys according to Si Content and Cooling Rate)

  • 박경섭;김희수
    • 한국주조공학회지
    • /
    • 제37권4호
    • /
    • pp.108-114
    • /
    • 2017
  • In this study, we investigated the effect of the Si content on the secondary dendrite arm spacing (SDAS) of hypoeutectic Al-Si binary alloys in the range of 4~10 wt% Si. Cooling curves were measured during the solidification of the alloy cast in a step-wise mold. We compared two kinds of solidification time: the first is the total solidification time for both dendritic and eutectic growth, and the second is the solidification time for only dendritic growth. The proportional constant in the relationship between SDAS and cooling rate was estimated, as this constant represents the stability of the cast microstructure. The proportional constant decreased with the Si contents from 4 wt% to 8 wt%, and it remains relatively uniform with up to 10 wt% of Si.

원자력 발전소 계측제어시스템의 정보취득장치 설계 (Data Acquisition System Design of I&C System in Nuclear Power Plant)

  • 조정환;이동희
    • 조명전기설비학회논문지
    • /
    • 제17권2호
    • /
    • pp.102-108
    • /
    • 2003
  • 본 논문에서는 SDAS(Signal Data Acquisition System)를 설계하여 정밀도와 응답특성을 향상시킨 새로운 정보취득장치를 제안한다. 원자력 발전소에 적용되는 계측제어 시스템은 안전에 직접 또는 간접적으로 영향을 미치는 장치이므로 이들 기기는 안전등급의 분류에 따라 기기 검증의 절차에 의하여 현장 적용 이전에 주요 제어 설비가 설계명수 기간동안에 의도된 기능을 수행할 수 있음이 검증되어야 한다. 본 논문에서는 국제 기준 규격인 IEEE 규격과 Nuclear Regulatory Guide의 규격에 명시되어 있는 성능시험방법과 절차에 의한 기기검증에서 필수적인 장비인 정보취득장치를 제안하였고, 기존에 사용되고 있는 정보취득장치와 성능을 비교 분석하였다. 이론과 실험적인 연구가 수행되었고, 그 결과는 제안된 정보취득장치의 정밀도 성능이 개선되었음을 입증한다. 따라서 제안된 시스템은 고성능 계측제어시스템에 적용될 수 있다.

대전류 및 용가재 직경에 따른 Al5083 아크 용접부 마그네슘 기화 및 기계적 성질 (Effects of High Current and Welding Wire Diameter on the Magnesium Vaporization and Mechanical Properties of Al5083 Arc Welds)

  • 권혜미;박철호;홍인표;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.84-89
    • /
    • 2013
  • The demand of LNG tank and the constituting material, i.e., the Al5083 thick plate, increased due to the rapid growth LNG market. To weld the Al5083 thick plate, the gas metal arc welding (GMAW) of high current is necessary to increase manufacturing productivity incurred by the multi pass welding. However, the arc welding vaporizes the volatile element such as magnesium (Mg). This phenomenon changes the Mg composition of the weld metal and the mechanical properties. The study investigated the weldability of Al5083 alloys after conducting high current GMAW. The Al5083 alloy was welded by using different size of welding wires and high current (800-950A). As the arc current increased from 800A to 950A, the mechanical strength decreased and the secondary dendrite arm spacing (SDAS) increased. Even though the arc current increased SDAS, the mechanical strength decreased due to the Mg loss in the weldment. The large diameter of welding wire decreased the dilution of the weld, therefore increasing the Mg content and the strength of the weld. For the reason, the content of Mg in welds was a major parameter to determine the mechanical property for the high current GMAW. For the arc current between 800A and 950A, the yield strength of the weldments showed a relationship with the weight percent of Mg content ($X_{Mg}$): Y.S = 27.9($X_{Mg}$)-11.

Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리 (Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy)

  • 박상규;김정석
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

자동차용 Al-6Si-2Cu 합금의 용체화처리에 따른 미세조직 및 기계적 특성 변화 (Microstructure and Mechanical Properties on Solid Solution Heat Treatment of Al-6Si-2Cu Alloy for Lightweight Automotive)

  • 홍승표;김정석
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.538-542
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of $37{\mu}m$. In addition to the Al matrix, a large amount of coarsened eutectic Si, $Al_2Cu$ intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.