DOI QR코드

DOI QR Code

Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy

Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리

  • Park, Sang-Gyu (Department of Advanced material and Engineering, Chosun University) ;
  • Kim, Chung-Seok (Department of Materials Science and Engineering, Chosun University)
  • 박상규 (조선대학교 첨단소재공학과) ;
  • 김정석 (조선대학교 재료공학과)
  • Received : 2018.04.03
  • Accepted : 2018.04.13
  • Published : 2018.05.30

Abstract

The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

Keywords

References

  1. C. H. Caceres, I. L. Svensson and J. A. Taylor : Int. J. Cast. Metals Res., 15 (2003) 531. https://doi.org/10.1080/13640461.2003.11819539
  2. L. A. Dobrzanski, R. Maniara and J. H. Sokolowski : J. Achiev. Mater. Manufact. Eng., 17 (2006) 217.
  3. K. K. Waraich and O. P. Pandey : Int. J. Mat. Res., 101 (2010) 9.
  4. P. K. Rohatgi, D. Nath, S. S. Singh and B. N. Keshavaram : J. Mater. Sci., 29 (1994) 5975. https://doi.org/10.1007/BF00366882
  5. Y. Li, Y. Yang, Y. Wu, L. Wang and X. Liu : Mater. Sci. Eng., 527 (2010) 7132. https://doi.org/10.1016/j.msea.2010.07.073
  6. J. Lei, N. Li and M. C. Rao : Adv. Mater. Res., 51 (2008) 105. https://doi.org/10.4028/www.scientific.net/AMR.51.105
  7. J. Y. Yao and J. A. Taylor : J. Alloys Comp., 519 (2012) 60. https://doi.org/10.1016/j.jallcom.2011.12.047
  8. P. Sepehrband, R. Mahmudi and F. Khomamizadeh : Scr. Mater., 52 (2005) 253. https://doi.org/10.1016/j.scriptamat.2004.10.025
  9. C. Y. Jeong : Mater. Trans., 54 (2013) 588-594. https://doi.org/10.2320/matertrans.M2012285
  10. H. Ammar, A. Samuel, F. Samuel, E. Simielli and G. Sigworth : J. Lin, Metall. Mater. Trans., 43 (2012) 61. https://doi.org/10.1007/s11661-011-0808-7
  11. O. El Sebaie, A. M. Samuel, F. H. Samuel and H. W. Doty : Mater. Sci. Eng., 486 (2008) 241. https://doi.org/10.1016/j.msea.2007.09.011
  12. J. G. Jung, J. S. Park and Y. S. Ha : J. Kor. Inst. Metal Mater. 47 (2009) 223.
  13. H. Ye : J. Mater. Eng. Perform., 12 (2003) 288. https://doi.org/10.1361/105994903770343132
  14. A. R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche and M. Pekguleryuz : J. Alloys Comp., 551 (2013) 596. https://doi.org/10.1016/j.jallcom.2012.10.182
  15. F. J. Tavitas-Medrano, A. M. A. Mohamed, J. E. Gruzleski, F. H. Samuel and H. W. Doty : J. Mater. Sci., 45 (2010) 641. https://doi.org/10.1007/s10853-009-3978-6
  16. K. G. Basavakumar, P. G. Mukuda and M. Chakraborty : J. Mater. Sci., 42 (2007) 8714. https://doi.org/10.1007/s10853-007-1754-z
  17. F. H. Samuel, A. M. Samuel and L. Liu : J. Mater. Sci., 30 (1995) 2531. https://doi.org/10.1007/BF00362130
  18. J. J. I. Mattos, A. Y. Uehara, M. Sato and I. Ferreira : Proc. Eng., 2 (2010) 759. https://doi.org/10.1016/j.proeng.2010.03.082
  19. A. M. A. Mohamed, F. H. Samuel and Saleh Al kahtani : Mater. Sci. Eng., 577 (2013) 64. https://doi.org/10.1016/j.msea.2013.03.084
  20. Y. H. Cho, D. H. Joo, C. H. Kim and H. C. Lee : Mater. Sci. Forum., 519 (2006) 461.
  21. E. Tillova, M. Chalupova, L. Hurtalova, M. Bonek and L.A. Dobrzanski : J. Achiev. Mater. Manufact. Eng., 47 (2011) 19.
  22. L. Hurtalova, J. Belan, E. Tillova and M. Chalupova : Mater. Sci., 18 (2012) 228.
  23. S. P. Hong and C. S. Kim : AMR., 1110 (2015) 158. https://doi.org/10.4028/www.scientific.net/AMR.1110.158
  24. U. B. Baek, K. S. Ryu, A. Kim, and S. H. Hahm : J. Loss Prevent. Proc., 22 (2009) 971. https://doi.org/10.1016/j.jlp.2009.06.014
  25. D. Kent, G. B. Schaffer, and J. Drennan : Mater. Sci. Eng. A., 405 (2005) 65. https://doi.org/10.1016/j.msea.2005.05.104
  26. K. D. Woo, J. S. Lee, and S. W. Kim : Met. Mater. Int., 5 (1999) 363.
  27. Z. Ma, A. M. Samuel, F. H. Samuel, H. W. Doty and S. Valtierra : Mater. Sci. Eng. A., 490 (2008) 36. https://doi.org/10.1016/j.msea.2008.01.028
  28. E. Sjolander and S. Seifeddine : Mater. Design., 31 (2010) 44. https://doi.org/10.1016/j.matdes.2009.10.035
  29. T. Nishimura, H. Toda, M. Kobayashi, T. Kobayashi, K. Uesugi and Y. Suzuki : Int. J. Cast Metal. Res., 21 (2008) 114. https://doi.org/10.1179/136404608X361783
  30. Y. J. Li, S. Brusethaug and A. Olsen : Scripta Mater., 54 (2006) 99. https://doi.org/10.1016/j.scriptamat.2005.08.044
  31. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine and I. L. Svensson : J. Mater. Process. Tech., 209 (2009) 5669. https://doi.org/10.1016/j.jmatprotec.2009.05.030
  32. A. Gabrizi, S. Ferraro and G. Timelli : Mater. Charact., 85 (2013) 13. https://doi.org/10.1016/j.matchar.2013.08.012
  33. K. T. Cho, S. Yoo, K. M. Lim, H. S. Kim and W. B. Lee : J. Alloy. Compd., 509 (2011) 265. https://doi.org/10.1016/j.jallcom.2011.01.216