DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties on Solid Solution Heat Treatment of Al-6Si-2Cu Alloy for Lightweight Automotive

자동차용 Al-6Si-2Cu 합금의 용체화처리에 따른 미세조직 및 기계적 특성 변화

  • Hong, Seung-Pyo (Department of Materials Science and Engineering, Chosun University) ;
  • Kim, Chung-Seok (Department of Materials Science and Engineering, Chosun University)
  • Received : 2014.08.05
  • Accepted : 2014.09.12
  • Published : 2014.10.27

Abstract

Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of $37{\mu}m$. In addition to the Al matrix, a large amount of coarsened eutectic Si, $Al_2Cu$ intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.

Keywords

References

  1. B. M. A. Alawi and T. H. Bradley, Appl. Energ., 113, 1323 (2014). https://doi.org/10.1016/j.apenergy.2013.08.081
  2. K. T. Kim, J. Korea Foundry Soc., 31, 101 (2011) (in Korean). https://doi.org/10.7777/jkfs.2011.31.3.101
  3. K. Sasaki and T. Takahashi, Int. J. Fatigue., 28, 203 (2006). https://doi.org/10.1016/j.ijfatigue.2005.06.025
  4. L. Ceschini, A. Morri, A. Morri and G. Pivetti, Mater. Design, 32, 1367 (2011). https://doi.org/10.1016/j.matdes.2010.09.014
  5. M. Zeren, E. Karakulak and S. Gumus, Trans. Nonferrous Met. Soc. China, 21, 1698 (2011). https://doi.org/10.1016/S1003-6326(11)60917-5
  6. E. H. Samuel, A. M. Samuel and H. W. Doty, AFS Trans., 30, 839 (1996).
  7. Z. Li, A. M. Samuel, F. H. Samuel, C. Ravindran and S. Valtierra, J. Mater. Sci., 116, 1203 (2003).
  8. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine and I. L. Svensson, Mater. Design, 36, 522 (2012) https://doi.org/10.1016/j.matdes.2011.11.047
  9. E. Sj lander and S. Seifeddine, Mater. Design., 31, 44 (2010). https://doi.org/10.1016/j.matdes.2009.10.035
  10. T. Nishimura, H. Toda, M. Kobayashi, T. Kobayashi, K. Uesugi and Y. Suzuki, Int. J. Cast Metal. Res., 21 114 (2008). https://doi.org/10.1179/136404608X361783
  11. Y. J. Li, S. Brusethaug and A. Olsen, Scripta. Mater., 54, 99 (2006). https://doi.org/10.1016/j.scriptamat.2005.08.044
  12. I. A. Luna, H. M. Molinar, M. J. C. Roman, J. C. E. Bocardo and M. H. Trejo, Mater. Sci. Eng. A., 561, 1 (2013). https://doi.org/10.1016/j.msea.2012.10.064
  13. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine and I. L. Svensson, J. Mater. Process. Tech., 209, 5669 (2009). https://doi.org/10.1016/j.jmatprotec.2009.05.030