• Title/Summary/Keyword: SBF:

Search Result 131, Processing Time 0.03 seconds

Electrochemical Characteristics of Dental Implant in the Various Simulated Body Fluid and Artificial Saliva (다양한 유사체액과 인공타액에서 치과용 임플란트의 전기화학적 특성)

  • Kim, T.H.;Park, G.H.;Son, M.K.;Kim, W.G.;Jang, S.H.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.5
    • /
    • pp.226-231
    • /
    • 2008
  • Titanium and its alloy have been widely used in dental implant and orthopedic prostheses. Electrochemical characteristics of dental implant in the various simulated body fluids have been researched by using electrochemical methods. Ti-6Al-4V alloy implant was used for corrosion test in 0.9% NaCl, artificial saliva and simulated body fluids. The surface morphology was observed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The electrochemical stability was investigated using potentiosat (EG&G Co, 263A). The corrosion surface was observed using scanning electron microscopy (SEM). From the results of potentiodynamic test in various solution, the current density of implant tested in SBF and AS solution was lower than that of implant tested in 0.9% NaCl solution. From the results of passive film stability test, the variation of current density at constant 250 mV showed the consistent with time in the case of implant tested in SBF and AS solution, whereas, the current density at constant 250mV in the case of implant tested in 0.9% NaCl solution showed higher compared to SBF and AS solution as time increased. From the results of cyclic potentiodynamic test, the pitting potential and |$E_{pit}\;-\;E_{corr}$| of implant tested in SBF and AS solution were higher than those of implant tested in 0.9% NaCl solution.

Bioactivity enhancement of zirconia substrate by surface coating of diopside bioceramics using sol-gel method (솔젤법에 의한 다이옵사이드 생체 세라믹의 표면코팅 및 지르코니아 기판의 생체활성 증진)

  • Park, Hyunjung;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.183-190
    • /
    • 2022
  • Diopside (CaMgSi2O6) is known to have high bioactivity as well as excellent mechanical properties. In this study, we tried to improve the bioactivity of zirconia ceramics by surface coating of diopside and its bioactivity was investigated through an in vitro test. Surface coating on zirconia substrate was prepared by sol-gel method using a diopside sol which was prepared by dissolving Ca(NO3)2·4H2O, MgCl2·6H2O and Si(OC2H5)4 in ethanol with a fixed molar ratio and then hydrolysis. To examine the bioactivity of diopside coating, we examined the surface dissolution and the precipitation of new hydroxyapatite particles through in vitro test in SBF (Simulated Body Fluid) solution. Dense and thick diopside coating layers could be fabricated on zirconia substrate by sol-gel method. Also, we confirmed that they contained high bioactivity from the in vitro test, indicated the precipitation of hydroxyapatite particles after the 14 days immersion in SBF solution. In addition, we checked that the bioactivity of diopside coated layers was dependent on the repeated coating cycle and coating thickness.

Fabrication of Hydroxyapatite-coated Zirconia by Room Temperature Spray Process and Microstructural Change by Heat-treatment (상온 분사법에 의한 수산화아파타이트 코팅 지르코니아의 제조 및 미세구조에 미치는 열처리 효과)

  • Lee, Jong Kook;Eum, Sangcheol;Kim, Jaehong;Jang, Woo Yang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Hydroxyapatite coatings were fabricated by a room temperature spray method on zirconia substrates and the influence of heat-treatment on their microstructure was also investigated. Phase composition of coated hydroxyapatite films was similar to the starting powder, but the grain size of hydroxyapatite particles was reduced to the size of nano-scale about 100 nm. Grain size, particle compactness, and adhesiveness to zirconia of hydroxyapatite coatings were increased with heat-treatment temperature, but some of cracks by heat-treatment above $1100^{\circ}C$ were initiated between hydroxyapatite coatings and zirconia substrate. Heat-treated hydroxyapatite layers show the dissolution in SBF solution for 5 days. Hydroxyapatite-coated specimen heat-treated at $1100^{\circ}C$ for 1 h has a good biocompatibility, which specimen induced the nanocrystalline hydroxyapatite precipitates on the coating surface by the immersion in SBF solution for 5 days.

Influence of Unsteady Wake on Turbulent Separated Flows over a Backward-Facing Step (후향 계단 주위 난류 박리 유동에 대한 비정상 후류의 영향)

  • Chun, Se-Jong;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1708-1715
    • /
    • 2003
  • An experimental study was made of turbulent separated and reattaching flow over a backward-facing step, where unsteady wake was generated by a spoked-wheel type wake generator with cylindrical rods in front of the separated flow. The influence of unsteady wake was scrutinized in terms of the rotating speed of the wake generator (0$\leq$S $t_{H}$$\leq$0.4). A conditional averaging technique in corporation with SBF was employed to elucidate the influence of the unsteady wake on the large-scale vortical structures of the separated flow. Special attention was made during two-dimensional measurements of wall-pressure with or without unsteady wake. The wall-pressure fluctuations were used to predict dipole sound source by Curie's integral formula. It was found that the reduction of the dipole sound source was due to the reduction of turbulent kinetic energy by unsteady wake in the recirculation region.n.

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF

Biophysical properties of PPF/HA nanocomposites reinforced with natural bone powder

  • Kamel, Nagwa A.;Mansour, Samia H.;Abd-El-Messieh, Salwa L.;Khalil, Wafaa A.;Abd-El Nour, Kamal N.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.145-164
    • /
    • 2015
  • Biodegredable and injectable nanocomposites based on polypropylene fumarate (PPF) as unsaturated polyester were prepared. The investigated polyester was crosslinked with three different monomers namely N-vinyl pyrrolidone (NVP), methyl methacrylate (MMA) and a mixture of NVP and MMA (1:1 weight ratio) and was filled with 45 wt% of hydroxyapatite (HA) incorporated with different concentrations of chemically treated natural bone powder (NBP) (5, 10 and 15 wt%) in order to be used in treatment of orthopedics bone diseases and fractures. The nanocomposites immersed in the simulated body fluid (SBF) for 30 days, after the period of immersion in-vitro bioactivity of the nanocomposites was studied through Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDX) in addition to dielectric measurements. The degradation time of immersed samples and the change in the pH of the SBF were studied during the period of immersion.

A Study of a Correlation between Experiments and Calculations of Pressure Fluctuation on Hull Surface (선체 변동 압력에 관한 실험과 이론의 비교 연구)

  • Moon-Chan Kim;Ki-Sup Kim;In-Haeng Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • An experimental and computational study of the pressure fluctuation induced by a propeller on a hull surface was carried out with three ship models and seven model propellers. The fluctuation of pressure on a flat plate was measured at KRISO cavitation tunnel and calculated by a panel and lifting surface method(XForShip code). To extend the measurement data on the flat plate into that on complex hull forms, the correction factor was determined as a ratio of the solid boundary factor(SBF). The computation of pressure fluctuation around complex hull forms was also performed to make the full scale prediction and compared with the corrected experimental data. The calculated values agreed well with the compensated experimental data and it was found that the correction factor was about 0.65-0.7.

  • PDF

Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V

  • Lee, Kang;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.

Nanostructural Study of Apatite Film Biomimetically Grown in SBF (Simulated Body Fluid) (생체유사환경에서 성장된 아파타이트 층의 나노구조 연구)

  • Kim, Joung;Lee, Kap-Ho;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.690-696
    • /
    • 2005
  • The ultrastructure ore of a nanostructured apatite film nucleated from solution was studied to gain insights into that of bone minerals which is the most important constituent to sustain the strength of bones. Needle-shaped apatite crystal plates with a bimodal size distribution $(\~100\;to\;\~1000 nm)$ were randomly distributed and they were found to grow parallel to the c-axis ([002]), driven by the reduction of surface energy. Between these randomly distributed needle-shaped apatite crystals which are parallel to the film, apatite crystals (20-40nm) with the normal of the grains quasi-perpendicular to the c-axis were observed. These observations suggest that the apatite film is the interwoven structure of apatite crystals with the c-axis parallel and quasi-perpendicular to the fan. In some regions, amorphous calcium phosphate, which is a precursor of apatite, was also observed. In the amorphous phase, small crystalline particle with the size of 2-3 nm were observed. These particles were quite similar, in size and shape, to those observed in the femoral trabecular bone, suggesting the nucleation of apatites by a biomimetic process in vitro is similar to that in vivo.

HREM Analysis of Apatite Formation in Modified-Simulated Body Fluid Containing Bovine Serum Albumin (소 혈청 알부민이 함유된 유사체액 내에서 아파타이트의 생성에 대한 고분해능 전자현미경 분석)

  • Kim, Woo Jeong;Lee, Kap Ho;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Process of the hydroxyapatite (HA) formation on bioactive titanium metal prepared by NaOH treatment in a modified-simulated body fluid (mSBF) containing bovine serum albumin (BSA) was investigated by high resolution transmission electron microscope attached with energy dispersive X-ray spectrometer (EDX). The amorphous titanate, which was formed on titanium surface by NaOH treatment, combined with the calcium ions in the liquid to form an amorphous calcium titanite. With increasing of soaking time in the liquid, an amorphous calcium titanite combined with the phosphate ions to form an amorphous calcium phosphate with low Ca/P atomic ratio, and it grows as aggregates of plate (or needle)-like substance on titanium surface. The crystalline apatite layers, which are needle-shaped with the c axis parallel to the long axis, are formed in an amorphous calcium phosphate with further increase in soaking time. The formation of needle-shaped apatite layers can be explained by electrostatic effects and difference of concentration between calcium, phosphate, and albumin ions.