This study presents the use of multi-temporal JERS-1 SAR images to the land cover classification. So far, land cover classified by high resolution aerial photo and field survey and so on. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then classified land cover. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass
Journal of the Korean Society of Systems Engineering
/
v.16
no.1
/
pp.51-57
/
2020
The fighter pilot uses radar mounted on the fighter to obtain high-resolution SAR (Synthetic Aperture Radar) images for a specific area of distance, and then the pilot visually classifies targets within the image. However, the target configuration captured in the SAR image is relatively small in size, and distortion of that type occurs depending on the depression angle, making it difficult for pilot to classify the type of target. Also, being present with various types of clutters, there should be errors in target classification and pilots should be even worse if tasks such as navigation and situational awareness are carried out simultaneously. In this paper, the concept of operation and functional structure of radar system for fighter jets were presented to transfer the SAR image target classification task of fighter pilots to radar system, and the method of target classification with high accuracy was studied using the CNN ensemble model to archive higher classification accuracy than single CNN model.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.4
/
pp.589-593
/
2013
Remote sensing of SAR images is suitable for sea ice observations to obtain the sea ice data if clouds or weather conditions change. There are various types of sea ice, classification results can be seen more easily to detect the change by types of sea ice. In this study, we classified the image by supervised classification method, which is minimum distance was used. Also, we compared the overall accuracy when compared to the results with classification result of SAR images and the result of texture images. When using Radarsat-2 texture images, the overall accuracy was the highest, generally, when using the SAR images had higher overall accuracy.
Jaejun Do;Minjung Yoo;Jaeseok Lee;Hyoi Moon;Sunok Kim
Journal of the Korea Institute of Military Science and Technology
/
v.27
no.3
/
pp.319-328
/
2024
Semi-supervised learning is a good way to train a classification model using a small number of labeled and large number of unlabeled data. We applied semi-supervised learning to a synthetic aperture radar(SAR) image classification model with a limited number of datasets that are difficult to create. To address the previous difficulties, semi-supervised learning uses a model trained with a small amount of labeled data to generate and learn pseudo labels. Besides, a lot of number of papers use a single fixed threshold to create pseudo labels. In this paper, we present a semi-supervised synthetic aperture radar(SAR) image classification method that applies different thresholds for each class instead of all classes sharing a fixed threshold to improve SAR classification performance with a small number of labeled datasets.
Urban environment represent one of the most dynamic regions on earth. As in other countries, forests, green areas, agricultural lands are rapidly changing into residential or industrial areas in South Korea. Monitoring such rapid changes in land use requires rapid data acquisition, and satellite imagery can be an effective method to this demand. In general, SAR(Synthetic Aperture Radar) satellites acquire images with an active system, so the brightness of the image is determined by the surface roughness. Therefore, the water areas appears dark due to low reflection intensity, In the residential area where the artificial structures are distributed, the brightness value is higher than other areas due to the strong reflection intensity. If we use these characteristics of SAR images, settlement areas can be extracted efficiently. In this study, extraction of settlement areas was performed using TerraSAR-X of German high-resolution X-band SAR satellite and KOMPSAT-5 of South Korea, and object-oriented image classification method using the image segmentation technique is applied for extraction. In addition, to improve the accuracy of image segmentation, the speckle divergence was first calculated to adjust the reflection intensity of settlement areas. In order to evaluate the accuracy of the two satellite images, settlement areas are classified by applying a pixel-based K-means image classification method. As a result, in the case of TerraSAR-X, the accuracy of the object-oriented image classification technique was 88.5%, that of the pixel-based image classification was 75.9%, and that of KOMPSAT-5 was 87.3% and 74.4%, respectively.
The main objective of this study is to analyse the polarimetric characteristics of the various terrain targets by ground-based polarimetric SAR system and to confirm the compatible and effective polarimetric analysis method to reveal the polarization properties of different terrain targets by the GB-SAR. The fully polarimetric GB-SAR data with HH, HV, VH, and VV components were focused using the Deramp-FFT (DF) algorithm. The focused GB-SAR images were processed by the H/A/$\alpha$ polarimetric decomposition and the combined H/$\alpha$ or H/A/$\alpha$ and Wishart classification method. The segmented image and distribution graphs in H/$\alpha$ plane using Cloude and Pottier's method showed a reliable result that this quad-polarization GB-SAR data could be useful to classified corresponding scattering mechanism. The H/$\alpha$-Wishart and H/A/$\alpha$-Wishart classification results showed that a natural media and an artificial target were discriminated by the combined classification, in particular, after applying multi-looking and the Lee refined speckle filter.
The city of Khartoum, the capital of Sudan, was heavily damaged by the flood of the Nile in 2020. Classification using satellite images can define the damaged area and help emergency response. As Synthetic Aperture Radar (SAR) uses microwave that can penetrate cloud, it is suitable to use in the flood study. In this study, Random Forest classifier, one of the supervised classification algorithms, was applied to the flood event in Khartoum with various sizes of the training dataset and number of images using Sentinel-1 SAR. To create a training dataset, we used unsupervised classification and visual inspection. Firstly, Random Forest was performed by reducing the size of each class of the training dataset, but no notable difference was found. Next, we performed Random Forest with various number of images. Accuracy became better as the number of images in creased, but converged to a maximum value when the dataset covers the duration from flood to the completion of drainage.
The objective of this study is to quantitatively evaluate the effects of various SAR speckle reduction methods for multisource land-cover classification by backpropagation neural network, especially over the coastal region. The land-cover classification using neural network has an advantage over conventional statistical approaches in that it is distribution-free and no prior knowledge of the statistical distributions of the classes is needed. The goal of multisource land-cover classification acquired by different sensors is to reduce the classification error, and consequently SAR can be utilized an complementary tool to optical sensors. SAR speckle is, however, an serious limiting factor when it is exploited for land-cover classification. In order to reduce this problem. we test various speckle methods including Frost, Median, Kuan and EPOS. Interpreting the weights about training pixel samples, the “Importance Value” of each SAR images that reduced speckle can be estimated based on its contribution to the classification. In this study, the “Importance Value” is used as a criterion of the effectiveness.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.22
no.11
/
pp.1063-1069
/
2011
NCTR(Non-Cooperative Target Recognition) and ATR(Automatic Target Recognition) are methodologies to identify military targets using radar, optical, and infrared images. Among them, a strategy to recognize ground targets using synthetic aperature radar(SAR) images is called SAR ATR. In general, SAR ATR consists of three sequential stages: detection, discrimination and classification. In this paper, a modification of the polar mapping classifier(PMC) to identify inverse SAR(ISAR) images has been made in order to apply it to SAR ATR. In addition, a preprocessing scheme can mitigate the effect from the clutter, and information on the shadow is employed to improve the classification accuracy.
Yun, Hye Won;Choi, Yun Soo;Yoon, Ha Su;Ko, Jong Sik;Cho, Seong Kil
Spatial Information Research
/
v.22
no.1
/
pp.27-33
/
2014
Considering the wide coverage, the transparency from climate condition, Interferometric Synthetic Aperture Radar (InSAR) possesses a great potential for the landcover classification as shown in many precedent researches. In addition to the merits of InSAR products for the landcover classification, the time series analysis of InSAR pairs can provide a highly reliable basis to interpret landcover. We applied such idea with the test site in Mountain Baekdu located on the border between North Korea and China. Since it is recently noted as the potential volcanic activation site, the landcover especially the vegetation distribution information is highly essential to validate the reliability of Differential Interferometric Synthetic Aperture Radar (DInSAR) over Mt. Baekdu. The algorithms combining the auxiliary information from Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze the phase coherence and backscatter coefficient of Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) was established. The results using InSAR signatures from two polarization modes of ALOS PALSAR showed high reliability for mining landcover and spatial distribution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.