DOI QR코드

DOI QR Code

Preliminary Results of Polarimetric Characteristics for C-band Quad-Polarization GB-SAR Images Using H/A/$\alpha$ Polarimetric Decomposition Theorem

  • Published : 2009.12.30

Abstract

The main objective of this study is to analyse the polarimetric characteristics of the various terrain targets by ground-based polarimetric SAR system and to confirm the compatible and effective polarimetric analysis method to reveal the polarization properties of different terrain targets by the GB-SAR. The fully polarimetric GB-SAR data with HH, HV, VH, and VV components were focused using the Deramp-FFT (DF) algorithm. The focused GB-SAR images were processed by the H/A/$\alpha$ polarimetric decomposition and the combined H/$\alpha$ or H/A/$\alpha$ and Wishart classification method. The segmented image and distribution graphs in H/$\alpha$ plane using Cloude and Pottier's method showed a reliable result that this quad-polarization GB-SAR data could be useful to classified corresponding scattering mechanism. The H/$\alpha$-Wishart and H/A/$\alpha$-Wishart classification results showed that a natural media and an artificial target were discriminated by the combined classification, in particular, after applying multi-looking and the Lee refined speckle filter.

Keywords

References

  1. Cloude, S. R. and E. Pottier, 1997. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR, IEEE Transactions on Geosciences and Remote Sensing, 35(1): 68-78 https://doi.org/10.1109/36.551935
  2. Cosgrove, R. B., P. Milanfar, and J. Kositsky, 2004. Trained Detection of Buried Mines in SAR Images via the Deflection-Optimal Criterion, IEEE Transactions on Geoscience and Remote Sensing, 42(11): 2569-2575 https://doi.org/10.1109/TGRS.2004.834591
  3. Freeman, A. and S. L. Durden, 1998. A Three- Component Scattering Model for Polarimetric SAR Data, IEEE Transactions on Geosciences and Remote Sensing, 36(3): 963-973 https://doi.org/10.1109/36.673687
  4. Hamasaki, T., M. Sato, L. Ferro-Famil, and E. Pottier, 2005. Natural Objects Monitoring Using Polarimetric Interferometric Ground- Based SAR (GB-SAR) System, International Geoscience and Remote Sensing Symposium 2005, IGARSS 2005 proceedings, 6: 4092-4095, 25-29 July 2005 https://doi.org/10.1109/IGARSS.2005.1525814
  5. Lee, H., S. -J. Cho, N. -H. Sung, and J. -H. Kim, 2007a. Development of a GB-SAR (I): System Configuration and Interferometry, Korean Journal of Remote Sensing, 23(4): 237-245 https://doi.org/10.7780/kjrs.2007.23.4.237
  6. Lee, H., S. -J. Cho, N. -H. Sung, and J. -H. Kim, 2007b. Development of a GB-SAR (II): Focusing Algorithms, Korean Journal of Remote Sensing, 23(4): 247-256 https://doi.org/10.7780/kjrs.2007.23.4.247
  7. Lee, J. -S. and E. Pottier, 2009. Polarimetric Radar Imaging from Basics to Applications, CRC Press, Boca Raton, FL, USA
  8. Lee, J. -S., M. R. Grunes, and G. De Grandi, 1999. Polarmetric SAR Speckle Filtering and its Implication for Classification, IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2363-2373 https://doi.org/10.1109/36.789635
  9. Lee, J. -S., M. R. Grunes, and R. Kwok, 1994. Classification of Multi-Look Polarimetric SAR Imagery Based on Complex Wishart Distribution, International Journal of Remote Sensing, 15(11): 2299-2311. https://doi.org/10.1080/01431169408954244
  10. Lee, J. -S., M. R. Grunes, E. Pottier, and L. Ferro-Famil, 2004. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics, IEEE Transactions on Geoscience and Remote Sensing, 42(4): 722-731 https://doi.org/10.1109/TGRS.2003.819883
  11. Lee, J. -S., M. R. Grunes, T. L. Ainsworth, L. -J. Du, D. L. Schuler, and S. R. Cloude, 1999. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier, IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2249-2258 https://doi.org/10.1109/36.789621
  12. Leva, D., G. Nico, D. Tarchi, J. Fortuny-Guaschi, and A. J. Sieber, 2003. Temporal Analysis of a Landslide by Means of a Ground-Based SAR Interferometer, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 745-752 https://doi.org/10.1109/TGRS.2003.808902
  13. Luzi, G., L. Noferini, D. Mecatti, G. Macaluso, M. Pieraccini, C. Atzeni, A. Schaffhauser, R. Fromm, and T. Nagler, 2009. Using a Ground-Based SAR Interferometer and a Terrestrial Laser Scanner to Monitor a Snow-Covered Slope: Results From an Experimental Data Collection in Tyrol (Austria), IEEE Transactions on Geoscience and Remote Sensing, 47(2): 382-393 https://doi.org/10.1109/TGRS.2008.2009994
  14. Luzi, G., M. Pieraccini, D. Mecatti, L. Noferini, G. Guidi, F. Moia, and C. Atzeni, 2004. Ground-Based Radar Interferometry for Landslides Monitoring: Atmospheric and Instrumental Decorrelation Sources on Experimental Data, IEEE Transactions on Geoscience and Remote Sensing, 42(11): 2454-2466 https://doi.org/10.1109/TGRS.2004.836792
  15. Luzi, G., M. Pieraccini, D. Mecatti, L. Noferini, G. Macaluso, A. Tamburini, and C. Atzeni, 2007. Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry, IEEE Geoscience and Remote Sensing Letters, 4(3): 495-499 https://doi.org/10.1109/LGRS.2007.898282
  16. Millot, P. and A. Berges, 1996. Ground Based S.A.R. Imaging Tool for the Design of Buried Mine Detectors, the Detection of Abandoned Land Mines: A Humanitarian Imperative Seeking a Technical Solution, EUREL International Conference on, 157-159, 7-9 October 1996, Edinburgh, UK
  17. Nico, G., D. Leva, G. Antonello, and D. Tarchi, 2004. Gournd-Based SAR Interferometry for Terrain Mapping: Theory and Sensitivity Analysis, IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1344-1350 https://doi.org/10.1109/TGRS.2004.826556
  18. Nico, G., D. Leva, J. Fortuny-Guasch, G. Antonello, and D. Tarchi, 2005. Generation of Digital Terrain Models with a Ground-Based SAR System, IEEE Transactions on Geoscience and Remote Sensing, 43(1): 45-49 https://doi.org/10.1109/TGRS.2004.838354
  19. Pieraccini, M., G. Luzi, and C. Atzeni, 2001. Terrain Mapping by Ground-Based Interferometric Radar, IEEE Transactions on Geoscience and Remote Sensing, 39(10): 2176-2181 https://doi.org/10.1109/36.957280
  20. Tarchi, D., H. Rudolf, G. Luzi, L. Chiarantini, P. Coppo, and A. J. Sieber, 1999. SAR Interferometry for Structural Changes Detection: a Demonstration Test on a Dam, International Geoscience and Remote Sensing Symposium 1999, IGARSS 1999 proceedings, 3: 1522-1524
  21. Tarchi, D., H. Rudolf, M. pieraccini, and C. Atzeni, 2000. Remote Monitoring of Buildings Using a Ground-Based SAR: Application to Cultural Heritage Survey, International Journal of Remote Sensing, 21(18): 3545-3551 https://doi.org/10.1080/014311600750037561
  22. Tarchi, D., N. Casagli, R. Fanti, D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, 2003a. Landslide Monitoring by Using Ground-Based SAR Interferometry: an Example of Application to the Tessina Landslide in Italy, Engineering Geology, 68: 15-30 https://doi.org/10.1016/S0013-7952(02)00196-5
  23. Tarchi, D., N. Casagli, S. Moretti, D. Leva, and A. J. Sieber, 2003b. Monitoring Landslide Displacement by Using Ground-Based Synthetic Aperture Radar Interferometry: Application to the Ruinon Landslide in the Italian Alps, Journal of Geophysical Research, 108(B8): 2387, doi:10.1029/2002JB002204
  24. Zhou, Z. -S., W. -M. Boerner, and M. Sato, 2004. Development of a Ground-Based Polarimetric Broadband SAR System for Noninvasive Ground-Truth Validation in Vegetation Monitoring, IEEE Transactions on Geoscience and Remote Sensing, 42(9): 1803-1810 https://doi.org/10.1109/TGRS.2004.832248
  25. PolSARpro software: http://envisat.esa.int/polsarpro/