• Title/Summary/Keyword: SAR Classification

Search Result 106, Processing Time 0.028 seconds

Filtering Effect in Supervised Classification of Polarimetric Ground Based SAR Images

  • Kang, Moon-Kyung;Kim, Kwang-Eun;Cho, Seong-Jun;Lee, Hoon-Yol;Lee, Jae-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.705-719
    • /
    • 2010
  • We investigated the speckle filtering effect in supervised classification of the C-band polarimetric Ground Based SAR image data. Wishart classification method was used for the supervised classification of the polarimetric GB-SAR image data and total of 6 kinds of speckle filters were applied before supervised classification, which are boxcar, Gaussian, Lopez, IDAN, the refined Lee, and the refined Lee sigma filters. For each filters, we changed the filtering kernel size from $3{\times}3$ to $9{\times}9$ to investigate the filtering size effect also. The refined Lee filter with the kernel size of bigger than $5{\times}5$ showed the best result for the Wishart supervised classification of polarimetric GB-SAR image data. The result also showed that the type of trees could be discriminated by Wishart supervised classification of polarimetric GB-SAR image data.

Classification of Fused SAR/EO Images Using Transformation of Fusion Classification Class Label

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.671-682
    • /
    • 2012
  • Strong backscattering features from high-resolution Synthetic Aperture Rader (SAR) image provide useful information to analyze earth surface characteristics such as man-made objects in urban areas. The SAR image has, however, some limitations on description of detail information in urban areas compared to optical images. In this paper, we propose a new classification method using a fused SAR and Electro-Optical (EO) image, which provides more informative classification result than that of a single-sensor SAR image classification. The experimental results showed that the proposed method achieved successful results in combination of the SAR image classification and EO image characteristics.

Web-based synthetic-aperture radar data management system and land cover classification

  • Dalwon Jang;Jaewon Lee;Jong-Seol Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1858-1872
    • /
    • 2023
  • With the advance of radar technologies, the availability of synthetic aperture radar (SAR) images increases. To improve application of SAR images, a management system for SAR images is proposed in this paper. The system provides trainable land cover classification module and display of SAR images on the map. Users of the system can create their own classifier with their data, and obtain the classified results of newly captured SAR images by applying the classifier to the images. The classifier is based on convolutional neural network structure. Since there are differences among SAR images depending on capturing method and devices, a fixed classifier cannot cover all types of SAR land cover classification problems. Thus, it is adopted to create each user's classifier. In our experiments, it is shown that the module works well with two different SAR datasets. With this system, SAR data and land cover classification results are managed and easily displayed.

Analysis of Ship Classification Performances Using OpenSARShip DB (OpenSARShip DB를 이용한 선박식별 성능 분석)

  • Lee, Seung-Jae;Chae, Tae-Byeong;Kim, Kyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.801-810
    • /
    • 2018
  • Ship monitoring using satellite synthetic aperture radar (SAR) images consists of ship detection, ship discrimination, and ship classification. A large number of methods have been proposed to improve the detection and discrimination capabilities, while only a few studies exist for ship classification. Thus, many studies for the ship classification are needed to construct ship monitoring system having high performance. Note that constructing database (DB), which contains both SAR images and labels of various ships, is important for research on the ship classification. In the airborne SAR classification, many methods have been developed using moving and stationary target acquisition and recognition (MSTAR) DB. However, there has been no publicly available DB for research on the ship classification using satellite SAR images. Recently, Shanghai Key Laboratory has constructed OpenSARShip DB using both SAR images of various ships generated from Sentinel-1 satellite of European Space Agency (ESA) and automatic identification system (AIS) information. Thus, the applicability of OpenSARShip DB for ship classification should be investigated by using the concepts of airborne SAR classification which have shown high performances. In this study, ship classification using satellite SAR images are conducted by applying the concepts of airborne SAR classification to OpenSARShip DB, and then the applicability of OpenSARShip DB is investigated by analyzing the classification performances.

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

Polarimetric SAR Image Classification Based on the Degree of Polarization and Co-Polarized Phase-Difference Statistics (편파화 정도와 동일 편파 위상 차를 이용한 SAR 영상 분류)

  • Chang, Geba;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1345-1351
    • /
    • 2007
  • This paper proposes a polarimetric SAR image classification technique based on the degree of poarization(DoP) and copolarized phase-difference(CPD) statistics. At first, the formulation for the DoP and CPD is derived. Then, the classification technique is verified with the SAR full polarimetric L-band data with consideration of exceptional cases. The technique has capability of classifying SAR data into four major classes, such as bare surface, short-vegetation canopy, tall-vegetation canopy, and village.

Evaluating Distribution Trends of Classification Accuracy by Triangular Training Operator in SAR/VIR FCC : A Case Study of Songkhla Lake Basin in Thailand (SAR/VIR FCC에서 삼각 트레이닝 도구에 의한 분류정확도 분포추세 평가: 태국의 송클라 호수 유역을 사례로)

  • Jung Sup Um
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.3
    • /
    • pp.375-388
    • /
    • 2003
  • This study mainly focuses on evaluating how the triangular training operator could improve classification accuracy in SAR(Synthetic Aperture Radar) and VIR FCC(Visible Infra-red, False Colour Composite). The techniques for the determination of the most informative SAR/VIR combinations in the triangular space diagram, as developed tv the author of the paper, are given and the results obtained are presented. The SAR alone, VIR alone and SAR/VIR FCC classification showed trends for gradual improvement of accuracy. Accuracy distribution pattern for individual classes could be explained closely related to SAR/VIR signature components in the process of the triangular synergistic training. Due to contribution of SAR signature in training samples, it was possible to isolate major terrain features such as cloud cover area and roughness target with acceptable spatial precision. It is anticipated that this research output could be used as a valuable reference for distribution trends of classification accuracy obtained by triangular channel space based training in synergistic application.

Landcover classification by coherence analysis from multi-temporal SAR images (다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류)

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.132-137
    • /
    • 2009
  • This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.

  • PDF

Evaluation of the Pi-SAR Data for Land Cover Discrimination

  • Amarsaikhan, D.;Sato, M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1087-1089
    • /
    • 2003
  • The aim of this study is to evaluate the Pi-SAR data for land cover discrimination using a standard method. For this purpose, the original polarization and Pauli components of the Pi-SAR X-band and L-band data are used and the results are compared. As a method for the land cover discrimination, the traditional method of statistical maximum likelihood decision rule is selected. To increase the accuracy of the classification result, different spatial thresholds based on local knowledge are determined and used for the actual classification process. Moreover, to reduce the speckle noise and increase the spatial homogeneity of different classes of objects, a speckle suppression filter is applied to the original Pi-SAR data before applying the classification decision rule. Overall, the research indicated that the original Pi-SAR polarization components can be successfully used for separation of different land cover types without taking taking special polarization transformations.

  • PDF

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.