• 제목/요약/키워드: SAR Classification

검색결과 106건 처리시간 0.018초

Filtering Effect in Supervised Classification of Polarimetric Ground Based SAR Images

  • Kang, Moon-Kyung;Kim, Kwang-Eun;Cho, Seong-Jun;Lee, Hoon-Yol;Lee, Jae-Hee
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.705-719
    • /
    • 2010
  • We investigated the speckle filtering effect in supervised classification of the C-band polarimetric Ground Based SAR image data. Wishart classification method was used for the supervised classification of the polarimetric GB-SAR image data and total of 6 kinds of speckle filters were applied before supervised classification, which are boxcar, Gaussian, Lopez, IDAN, the refined Lee, and the refined Lee sigma filters. For each filters, we changed the filtering kernel size from $3{\times}3$ to $9{\times}9$ to investigate the filtering size effect also. The refined Lee filter with the kernel size of bigger than $5{\times}5$ showed the best result for the Wishart supervised classification of polarimetric GB-SAR image data. The result also showed that the type of trees could be discriminated by Wishart supervised classification of polarimetric GB-SAR image data.

Classification of Fused SAR/EO Images Using Transformation of Fusion Classification Class Label

  • Ye, Chul-Soo
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.671-682
    • /
    • 2012
  • Strong backscattering features from high-resolution Synthetic Aperture Rader (SAR) image provide useful information to analyze earth surface characteristics such as man-made objects in urban areas. The SAR image has, however, some limitations on description of detail information in urban areas compared to optical images. In this paper, we propose a new classification method using a fused SAR and Electro-Optical (EO) image, which provides more informative classification result than that of a single-sensor SAR image classification. The experimental results showed that the proposed method achieved successful results in combination of the SAR image classification and EO image characteristics.

Web-based synthetic-aperture radar data management system and land cover classification

  • Dalwon Jang;Jaewon Lee;Jong-Seol Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1858-1872
    • /
    • 2023
  • With the advance of radar technologies, the availability of synthetic aperture radar (SAR) images increases. To improve application of SAR images, a management system for SAR images is proposed in this paper. The system provides trainable land cover classification module and display of SAR images on the map. Users of the system can create their own classifier with their data, and obtain the classified results of newly captured SAR images by applying the classifier to the images. The classifier is based on convolutional neural network structure. Since there are differences among SAR images depending on capturing method and devices, a fixed classifier cannot cover all types of SAR land cover classification problems. Thus, it is adopted to create each user's classifier. In our experiments, it is shown that the module works well with two different SAR datasets. With this system, SAR data and land cover classification results are managed and easily displayed.

OpenSARShip DB를 이용한 선박식별 성능 분석 (Analysis of Ship Classification Performances Using OpenSARShip DB)

  • 이승재;채태병;김경태
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.801-810
    • /
    • 2018
  • 위성 SAR 영상을 이용한 선박 모니터링은 선박탐지, 선박변별, 선박식별의 세 단계로 분류할 수 있다. 이 중 선박탐지 및 변별에 대해서는 세계적으로 많은 연구가 이루어졌으나, 선박식별에 대해서는 소수의 연구들만이 존재한다. 따라서 향후 고성능의 선박 모니터링 시스템을 구축하기 위해서는 많은 선박식별 연구가 필요한 상황이다. 선박식별 연구를 수행하기 위해서는 먼저 여러 기종의 선박에 대한 위성 SAR 영상과 이에 대응하는 선박 기종 정보를 모두 획득하여 데이터베이스(database: DB)를 구축하는 것이 중요하다. 항공 SAR 영상을 이용한 표적식별의 경우, 지상표적에 대한 미국 moving and stationary target acquisition and recognition(MSTAR) DB를 이용하여 많은 연구들이 수행되었지만, SAR 위성을 이용한 선박식별의 경우, 아직까지 공개적으로 이용 가능한 DB가 없었다. 이에 최근 중국 Shanghai Key Laboratory에서는 유럽우주국(European Space Agency: ESA)에서 운용하는 Sentinel-1 영상과 자동인식시스템(automatic identification system: AIS)으로부터 획득한 선박정보를 결합하여 선박식별 연구용 DB인 OpenSARShip DB를 구축하였다. 이에 먼저 항공 SAR 영상을 이용한 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 위성 SAR DB에 적용하여 OpenSARShip DB의 활용성을 조사해볼 필요가 있다. 따라서 본 논문에서는 기존 항공 SAR 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 OpenSARShip DB에 적용하여 선박식별을 수행한 후, 그 성능을 분석하여 OpenSARShip DB의 활용성을 조사한다.

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • 대한원격탐사학회지
    • /
    • 제25권3호
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

편파화 정도와 동일 편파 위상 차를 이용한 SAR 영상 분류 (Polarimetric SAR Image Classification Based on the Degree of Polarization and Co-Polarized Phase-Difference Statistics)

  • 장지성;오이석
    • 한국전자파학회논문지
    • /
    • 제18권12호
    • /
    • pp.1345-1351
    • /
    • 2007
  • 본 논문에서는 편파화 정도(Degree of Polarization: DoP)와 동일 편파 위상차(Co-polarized Phase-Difference: CPD)를 이용한 SAR 영상 분류법을 제안한다. 우선, 측정된 stokes 산란 operator로부터 DoP와 CPD를 얻는 계산식을 유도하고, SAR 영상 분류 과정을 설명한다. 다음에는 측정에서 얻은 완전 편파 L밴드 SAR 영상 데이터에 분류법을 적용하여 그 정확성을 검증하고, 예외 경우를 검토한다. 마지막으로 제안된 분류법으로 SAR 영상을 크게 4가지 그룹인 맨땅, 낮은 식물, 높은 식물, 주거 지역(마을)으로 분류한 결과를 보인다.

SAR/VIR FCC에서 삼각 트레이닝 도구에 의한 분류정확도 분포추세 평가: 태국의 송클라 호수 유역을 사례로 (Evaluating Distribution Trends of Classification Accuracy by Triangular Training Operator in SAR/VIR FCC : A Case Study of Songkhla Lake Basin in Thailand)

  • Jung Sup Um
    • 대한지리학회지
    • /
    • 제38권3호
    • /
    • pp.375-388
    • /
    • 2003
  • SAR와 VIR 영상을 디지털 환경에서 통합하여 상승효과를 도출하려는 응용은 아직까지도 탐색적인 연구수준에 머물러 있다. 본 연구는 SAR와 VIR을 통합한 영상에서 삼각 트레이닝 도구가 개별 클라스의 분류 정확도의 분포추세에 미치는 영향을 평가하는 데 주안점을 두고 있다. SAR 데이터와 VIR 데이터가 단일 시너지 영상을 제작하기 위해 통합되었다. 분류정확도의 향상과정이 SAR, VIR, SAR/VIR 통합영상에서 단계적으로 확실하게 도출되었다. 아울러 개별 클라스의 분류정확도가 FCC에 의거한 트레이닝 샘플의 신호(signature)값과 밀접한 상관성을 가지고 분포되는 것이 확인되었다. 한 예로 FCC에서 SAR 영상 신호(signature)의 기여 때문에 구름으로 덮힌 지역과 굴곡을 지닌 지상물체가 (VIR에서는 사실상 분류가 불가능하였던) 상당한 공간 정확도를 가지고 분류되었다. 본 연구가 SAR/VIR을 통합한 응용분야에서 분류정확도의 분포추세에 대한 정량화되고 객관적인 근거가 부재하여 직면하였던 한계를 극복할 수 있는 계기가 되어 향후 SAT/VIR 원격탐사에서 개별 클라스에 대해 확보할 수 있는 분류 정확도에 대한 중요한 참고자료가 될 수 있을 것으로 사료된다.

다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류 (Landcover classification by coherence analysis from multi-temporal SAR images)

  • 윤보열;김윤수
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.132-137
    • /
    • 2009
  • 본 연구는 지표투과력이 높은 L밴드 SAR 영상자료를 이용하여 토지피복 분류를 수행하였다. 다중시기 SAR 영상자료의 시간적 변이도 특성이 각기 다르게 나타나는 점을 이용하여 영상의 긴밀도 정보를 추출하고, 추출된 긴밀도 정보를 기반으로 분류를 수행하였다. 시간적 긴밀도 정보를 추출하기 위해 반복 패스를 통해 획득된 간섭 레이더(Interferometry SAR, 이하 InSAR) 기법을 이용하였고, 다중시기 영상에 대해 가장 최적의 기선거리에서 선정된 긴밀도 정보를 포함하는 영상을 선정하여 토지피복 분류작업을 수행한 결과 분류된 객체들 간에 명확하게 구분됨을 확인할 수 있었다.

  • PDF

Evaluation of the Pi-SAR Data for Land Cover Discrimination

  • Amarsaikhan, D.;Sato, M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1087-1089
    • /
    • 2003
  • The aim of this study is to evaluate the Pi-SAR data for land cover discrimination using a standard method. For this purpose, the original polarization and Pauli components of the Pi-SAR X-band and L-band data are used and the results are compared. As a method for the land cover discrimination, the traditional method of statistical maximum likelihood decision rule is selected. To increase the accuracy of the classification result, different spatial thresholds based on local knowledge are determined and used for the actual classification process. Moreover, to reduce the speckle noise and increase the spatial homogeneity of different classes of objects, a speckle suppression filter is applied to the original Pi-SAR data before applying the classification decision rule. Overall, the research indicated that the original Pi-SAR polarization components can be successfully used for separation of different land cover types without taking taking special polarization transformations.

  • PDF

자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류 (Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers)

  • 유희영;박노욱;홍석영;이경도;김예슬
    • 대한원격탐사학회지
    • /
    • 제31권3호
    • /
    • pp.205-214
    • /
    • 2015
  • 이 연구에서는 자료변환기법을 이용해 추출된 여러 특징과 다양한 분류방법론을 결합하여 다중시기 SAR 자료를 위한 새로운 토지피복 분류기법을 제안하였다. 먼저, 다중시기 SAR 자료로부터 원본자료와는 다른 새로운 정보를 추출하기 위해 주성분분석과 3차원 웨이블렛 변환을 이용한 자료변환을 수행하였다. 그리고 나서 최대우도법 분류자, 신경망, support vector machine을 포함한 세 가지 다른 분류자를 변환된 특징자료들과 원본 후방산란계수 자료를 포함한 세가지 자료에 적용하여 다양한 초기 분류 결과를 얻도록 한다. 이후 다수결규칙을 통해 모든 초기결과를 결합하여 최종 분류 결과를 생성하게 된다. 다중시기 ENVISAT ASAR 자료를 이용한 사례연구에서 모든 초기 결과는 사용한 특징자료와 분류자의 종류에 따라 매우 다양한 분류정확도를 보였다. 이러한 9개의 초기 분류 결과를 결합한 최종 분류 결과는 가장 높은 분류 정확도를 보여주고 있는데, 이는 각 초기 분류 결과가 토지피복을 결정하기 위한 상호 보완적인 정보를 제공하기 때문이다. 이 연구에서의 분류정확도 향상은 주로 자료변환을 통해 얻어진 각기 다른 특징자료와 다른 분류자를 결합에 의한 다양성 확보에서 기인한다. 그러므로 이 연구에서 제안한 토지피복 분류방법론은 다중시기 SAR자료의 분류에 효과적으로 적용가능하며, 또한 다중센서 원격탐사 자료융합으로 확장이 가능하다.