• 제목/요약/키워드: SAPO-34

검색결과 27건 처리시간 0.031초

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction (키토산을 이용한 메조 세공 SAPO-34 촉매의 합성 및 DTO 반응)

  • Yoon, Young-Chan;Song, Kang;Lim, Jeong-Hyeon;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • 제32권3호
    • /
    • pp.305-311
    • /
    • 2021
  • Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.

Synthesis and Their Catalytic Performance on Microporous Materials(CHA, ERI and MTT types) (마이크로다공성재료의 합성과 촉매적성능 (CHA, ERI, and MTT types))

  • Kang, Mi-Sook;Park, Jong-Yul;Um, Myeong-Heon
    • Korean Journal of Materials Research
    • /
    • 제9권2호
    • /
    • pp.117-123
    • /
    • 1999
  • This work was focused on the synthesis and their catalytic performance on microporous materials having various pore types and dimensions in structures, such as the SAPO-34 and the SAPO-44 with CHA type, the SAPO-17 with ERI type of three dimensional structures, and the ZSM-23 with MTT type of one dimensional structure. Synthesized materials exhibited various acidities and the selectivities to olefin in methanol conversion. As a result, the order of their acid strength was as follows; SAPO-44>SAPO-34>SAPO-17>ZSM-5. On the other hand, the CHA type materials, such as SAPO-34 and SAPO-44, had high selectivity to light olefins(ethylene or propylene), and ZSM-23 with MTT typ of one dimensional structure showed high selectivity to paraffins over $\textrm{C}_{5}$~. This result is a proof that the structure in material had strong influence on catalytic performance. In addition, a surprising result is that the catalytic selectivity to ethylene enhanced on Ni-corporated materials compared with the non-corporated.

  • PDF

A Facile Synthesis of SAPO-34 Molecular Sieves with Microwave Irradiation in Wide Reaction Conditions

  • Jun, Jong-Won;Lee, Ji-Sun;Seok, Hwi-Young;Chang, Jong-San;Hwang, Jin-Soo;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1957-1964
    • /
    • 2011
  • Various reaction conditions uding temperature, time and type and concentration of templates have been changed in order to facilely synthesize, especially with microwave (MW) heating, SAPO-34 molecular sieves. SAPO-34 molecular sieve can be synthesized rapidly with microwave irradiation from a gel containing tetraethylammonium hydroxide (TEAOH) as a template. However, other several templating molecules lead to SAPO-5 molecular sieve under microwave irradiation even though SAPO-34 is obtained by conventional electric synthesis from the same reactant gels. Moreover, SAPO-34 can be obtained more easily by increasing the TEAOH or silica concentration or by increasing the reaction temperature. SAPO-34 can be obtained within 5 min in a selected condition (high temperature of 210 $^{\circ}C$) with microwave heating, which may lead to a continuous production of the important material. SAPO-34 synthesized by microwave irradiation is homogeneous and small in size and shows acidity and a stable performance in the dehydration of methanol and 2-butanol to olefins, suggesting potential applications in acid catalysis.

Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction (DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과)

  • Song, Kang;Yoon, Young-Chan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • 제32권1호
    • /
    • pp.20-27
    • /
    • 2021
  • Effects of the etching treatment of SAPO-34 catalyst were investigated to improve the catalytic lifetime in DTO reaction. The aqueous NH3 solution was a more appropriate treatment agent which could control the degree of etching progress, compared to that of using a strong acid (HCl) or alkali (NaOH) solution. Therefore, the effect on characteristics and lifetime of SAPO-34 catalyst was observed using the treatment concentration and time of aqueous NH3 solution as variables. As the treatment concentration or time of aqueous NH3 solution increased, the growth of erosion was proceeded from the center of SAPO-34 crystal plane, and the acid site concentration and strength gradually decreased. Meanwhile, it was found that external surface area and mesopore volume of SAPO-34 catalyst increased at appropriate treatment conditions. When the treatment concentration and time were 0.05 M and 3 h, respectively, the lifetime of the treated SAPO-34 catalyst was the longest, and was significantly enhanced by ca. 36% (based on DME conversion of > 90%) compared to that of using the untreated catalyst. The model for the etching progress of SAPO-34 catalyst in a mild treatment process using aqueous NH3 solution was also proposed.

Selective Crystallization of SAPO-5 and SAPO-34 Molecular Sieves in Alkaline Condition: Effect of Heating Method

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Kim, Young-Ho;Park, Sang-Eon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.558-562
    • /
    • 2005
  • Crystallization of SAPO-5 and SAPO-34 molecular sieves with microwave and conventional electric heating of the same gel has been investigated in an alkaline condition using N,N,N’N’tetraethylethylenediamine as a template molecule. SAPO-5 structure can be selectively prepared with microwave heating because of the fast crystallization of the technique. On the other hand, SAPO-34 is the sole product with usual conventional electric heating because SAPO-5 can be gradually transformed into SAPO-34 structure with an increase in crystallization time. This phase selectivity is probably because of the relative stability of the two phases at the reaction conditions (kinetic effect). Crystallization with microwave heating can be suggested as a phase selective synthesis method for relatively unstable materials because of fast crystallization.

Comparative Evaluation of Mn(II) Framework Substitution in MnAPSO-34 and Mn-impregnated SAPO-34 Molecular Sieves Studied by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopy

  • Gernho Back;Kim, Yanghee;Cho, Young-Soo;Lee, Yong-Ill;Lee, Chul-Wee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • 제6권1호
    • /
    • pp.20-37
    • /
    • 2002
  • MnAPSO-34 and Mn-impregnated SAPO-34(Mn-SAPO-34) sample were prepared with various manganese contents and studied by electron spin resonance(ESR) and electron spin echo modulation(ESEM). Electron spin echo modulation analysis of 0.07mo1 % Mn(relative to p) in MnAPSO-34 with adsorbed D$_{2}$O shows two deuteriums at 0.26 nm and two at 0.36 nm from Mn. This suggests that two waters hydrate an MnO$_{4}$ configuration with a D-O bond orientation for the waters as expect for a negatively charged site at low manganese content (0.1 mol%), the ESR spectra of MnAPSO-34 and MnH-SAPO-34 exhibit the same parameters(g 2.01 and A 89 G), but the spectra obtained from MnAPSO-34 samples are better resolved. The decomposition temperature of as-synthesized MnAPSO-34 were in the range of 200-600 $^{\circ}C$ of the morpholine which is 12 $^{\circ}C$ higher than that in as-synthesized MnH-SAPO-34. Infrared spectra showed that the position of a band at 3450 $cm^{-1}$ / shifted about 15 $cm^{-1}$ / toward higher energy in MnAPSO-34 versus MnH-SAPO-34. The modulation depth of the two-pulse ESE of MnAPSO-34 with adsorbed D$_{2}$O is deeper than that of MnH-SAPO-34 with adsorbed D$_{2}$O. Three-pulse ESEM of MnAPSO-34 and MnH-SAPO-34 with adsorbed deuterium oxide shows that the local environments of manganese in the hydrated samples are different, suggesting that Mn(II) is framework substituted in MnAPSO-34 since it obviously occupies an extraframework position in MnH-SAPO-34.

  • PDF

Comparative Evaluation of Mn Substitution in a Framework Site in MnAPSO-34 and Mn-impregnated SAPO-34 Molecular Sieves Studied by Electron Spin Resonance and Electron Spin-Echo Modulation Spectroscopy

  • Gernho Back;Cho, Young-Soo
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 한국자기공명학회 2002년도 International Symposium on Magnetic Resonance
    • /
    • pp.80-80
    • /
    • 2002
  • MnPSO-34 and Mn-impregnated SAPO-34 (Mn-SAPO-34) sample were prepared with various manganese contents and studied by electron spin resonance (ESR) and electron spin-echo modulation (ESEM). Electron spin-echo modulation analysis of 0.07mol % Mn(relative to p) in MnAPSO-34 with adsorbed D$_2$O shows two deuteriums at 0.25 nm and two at 0.36 nm from Mn. This suggests that two waters hydrate an MnO4 configuration with a D-O bond orientation for the waters as expect for a negatively charged site at low manganese content (0.07 mol%), the ESR spectra of MnAPSO-34 and MnH-SAPO-34 exhibit the same parameters (g 2.02 and A 87 G), but the spectra obtained from MnAPSO-34 samples are better resolved. TGA of as-synthesized MnAPSO-34 shows that the decomposition temperature in the range 200-$600^{\circ}C$ of the morpholine is 12$^{\circ}C$ higher than that in as-synthesized MnH-SAPO-34. Infrared spectra shows that the position of a band at about 15 cm-1 toward higher energy in MnAPSO-34 versus MnH-SAPO-34. The modulation depth of the two-pulse ESE of MnAPSO-34 with absorbed D$_2$O is deeper than that of MnH-SAPO-34 with absorbed D$_2$O. Three-pulse ESEM of MnAPSO-34 and MnH-SAPO-34 with absorbed deuterium oxide shows that the local environments of manganese in the hydrated samples are different, suggesting that Mn(II) is framework substituted in MnAPSO-34 since it obviously occupies an extra-framework position in MnH-SAPO-34

  • PDF

Conversion of Dimethyl Ether to Light Olefins over a Lead-Incorporated SAPO-34 Catalyst with Hierarchical Structure

  • Kang Song;Jeong Hyeon Lim;Young Chan Yoon;Chu Sik Park;Young Ho Kim
    • Applied Chemistry for Engineering
    • /
    • 제34권5호
    • /
    • pp.548-555
    • /
    • 2023
  • SAPO-34 catalysts were modified with polyethylene glycol (PEG) and Pb to improve their catalytic lifetime and selectivity for light olefins in the conversion of dimethyl ether to olefins (DTO). Hierarchical SAPO-34 catalysts and PbAPSO-34 catalysts were synthesized according to changes in the molecular weight of PEG (M.W. = 1000, 2000, 4000) and the molar ratio of Pb/Al (Pb/Al = 0.0015, 0.0025, 0.0035), respectively. By introducing PEG into the SAPO-34 catalyst crystals, an enhanced volume of mesopores and reduced acidity were observed, resulting in improved catalytic performance. Pb was successfully substituted into the SAPO-34 catalyst frameworks, and an increased BET surface area and concentration of acid sites in the PbAPSO-34 catalysts were observed. In particular, the concentrations of the weak acid sites, which induce a mild reaction, were increased compared with the concentrations of strong acid sites. Then, the P2000-Pb(25)APSO-34 catalyst was prepared by simultaneously utilizing the synthesis conditions for the P2000 SAPO-34 and Pb(25)APSO-34 catalysts. The P2000-Pb(25)APSO-34 catalyst showed the best catalytic lifetime (183 min based on DME conversion > 90%), with an approximately 62% improvement compared to that of the unmodified catalyst (113 min).

Conversion of DME to Light Olefins over Mesoporous SAPO-34 Catalyst Prepared by Carbon Nanotube Template (탄소 나노튜브 주형물질에 의해 제조된 메조 세공 SAPO-34 촉매상에서 경질 올레핀으로의 DME 전환 반응)

  • Kang, Eun-Jee;Lee, Dong-Hee;Kim, Hyo-Sub;Choi, Ki-Hwan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • 제25권1호
    • /
    • pp.34-40
    • /
    • 2014
  • Mesoporous SAPO-34 catalyst was successfully synthesized by the hydrothermal method using carbon nanotube (CNT) as a secondary template. The effects of CNT contents (0.5, 1.5, 2.5, and 4.5 mol%) on catalytic performances were investigated. The synthesized catalysts were characterized with XRD, SEM, nitrogen physisorption isotherm and $NH_3$-TPD. Among the synthesized catalysts, SAPO-34 catalyst prepared by the addition of 1.5 mol% CNT (1.5C-SAPO-34) observed not only the largest amounts of mesopore volume but also acid sites. However, the mesopore volume was relatively decreased by further increasing of CNT contents due to the formation of small crystalline. The catalytic lifetime and the selectivity of light olefins ($C_2{\sim}C_4$) were examined for the dimethyl ether to olefins reaction. As a result, the 1.5C-SAPO-34 catalyst showed an improvement of ca. 36% in a catalytic lifetime and a better selectivity to light olefins as compared with the general SAPO-34 catalyst.

$Mn^{II}$ Location and Adsorbate Interactions in (M)MnH-SAPO-34 and (W)MnH-SAPO-34 studied by EPR and Electron Spin Echo Modulation Spectroscopies

  • Back, Gern-Ho;Kim, Yang-Hee;Cho, Young-Soo;Lee, Yong-Ill
    • Journal of the Korean Magnetic Resonance Society
    • /
    • 제6권2호
    • /
    • pp.118-131
    • /
    • 2002
  • Manganese-doped H-SAPO-34 samples were prepared by an ion-exchanged reaction between H-SAPO-34 and paramagnetic Mn(II) species in methanol media and characterized by ESR and Electron Spin-Echo Modulation(ESEM) studies. In the hydrated (W)MnH-SAPO-34 measured in water, the Mn(II) ion was octahedrally coordinated with four framework oxygens and two water molecules at a displaced site IV of the eight membered ring window in the ellipsoidal cavity, while the Mn(II) ion was octahedrally coordinated to three framework oxygens and three water molecules at a displaced site I' of the six membered ring window in the ellipsoidal cavity in hydrated(M)MnH-SAPO-34 measured in methanol. The similar result was found in the experiments with methanol adsorbents except ethanol.

  • PDF