DOI QR코드

DOI QR Code

Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction

DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과

  • Song, Kang (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Yoon, Young-Chan (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 송강 (충남대학교 응용화학공학과) ;
  • 윤영찬 (충남대학교 응용화학공학과) ;
  • 박주식 (한국에너지기술연구원) ;
  • 김영호 (충남대학교 응용화학공학과)
  • Received : 2020.11.06
  • Accepted : 2020.12.18
  • Published : 2021.02.10

Abstract

Effects of the etching treatment of SAPO-34 catalyst were investigated to improve the catalytic lifetime in DTO reaction. The aqueous NH3 solution was a more appropriate treatment agent which could control the degree of etching progress, compared to that of using a strong acid (HCl) or alkali (NaOH) solution. Therefore, the effect on characteristics and lifetime of SAPO-34 catalyst was observed using the treatment concentration and time of aqueous NH3 solution as variables. As the treatment concentration or time of aqueous NH3 solution increased, the growth of erosion was proceeded from the center of SAPO-34 crystal plane, and the acid site concentration and strength gradually decreased. Meanwhile, it was found that external surface area and mesopore volume of SAPO-34 catalyst increased at appropriate treatment conditions. When the treatment concentration and time were 0.05 M and 3 h, respectively, the lifetime of the treated SAPO-34 catalyst was the longest, and was significantly enhanced by ca. 36% (based on DME conversion of > 90%) compared to that of using the untreated catalyst. The model for the etching progress of SAPO-34 catalyst in a mild treatment process using aqueous NH3 solution was also proposed.

DTO (dimethyl ether to olefins) 반응에서 촉매의 수명 향상을 목적으로 SAPO-34 촉매의 식각 처리 효과를 연구했다. NH3 수용액은 HCl과 같은 강산 또는 NaOH와 같은 강알칼리 수용액과 비교하여 식각의 진행 정도를 제어할 수 있는 적절한 처리제였다. 따라서 NH3 수용액의 처리 농도와 시간을 변수로 하여 SAPO-34 촉매의 특성과 수명에 미치는 영향을 관찰하였다. NH3 수용액의 처리 농도 또는 시간이 증가함에 따라 SAPO-34 촉매 결정 면의 중심에서부터 침식이 진행되었으며, 점차적으로 산 점 농도와 산 세기가 감소하는 것으로 나타났다. 한편, 적절한 처리 조건에서 SAPO-34 촉매의 외부 표면적과 메조 세공 부피는 증가하는 것으로 나타났다. 처리 농도와 시간이 각각 0.05 M와 3 h일 때, 처리된 SAPO-34 촉매의 수명이 가장 우수했으며 처리 전 촉매와 비교하여 약 36% (DME 전환율 > 90% 기준)까지 크게 향상되었다. NH3 수용액을 이용한 온화한 처리과정에서 SAPO-34 촉매의 식각 진행에 대한 모형을 제안하였다.

Keywords

References

  1. Y. Yoshimura, N. Kijima, T. Hayakawa, K. Murata, K. Suzuki, F. Mizukami, K. Matano, T. Konishi, T. Oikawa, M. Saito, T. Shiojima, K. Shiozawa, K. Wakui, G. Sawada, K. Sato, S. Matsuo, and N. Yamaoka, Catalytic cracking of naphtha to light olefins, Catal. Surv. Asia, 4, 157-167 (2001). https://doi.org/10.1023/A:1011463606189
  2. M. A. Bari Siddiqui, A. M. Aitani, M. R. Saeed, and S. Al-Khattaf, Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst, Top. Catal., 53, 1387-1393 (2010). https://doi.org/10.1007/s11244-010-9598-1
  3. Y. K. Park, J. Y. Jeon, S. Y. Han, J. R. Kim, and C. W. Lee, Catalytic cracking of naphtha into light olefins, Korean Chem. Eng. Res., 41, 549-557 (2003).
  4. J. Y. Kim, Y. M. Jo, and S. B. Kim, Simultaneous treatment of tar and particles using oil scrubber and bag filter in biomass gasification, Appl. Chem. Eng., 30, 712-718 (2019).
  5. N. M. Dang, and K. S. Lee, Recent trends of using alternative nutrient sources for microalgae cultivation as a feedstock of biodiesel production, Appl. Chem. Eng., 29, 1-9 (2018). https://doi.org/10.14478/ace.2018.1002
  6. S. Ilias and A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons, ACS Catal., 3, 18-31 (2013). https://doi.org/10.1021/cs3006583
  7. U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga, and K. P. Lillerud, Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed., 51, 5810-5831 (2012). https://doi.org/10.1002/anie.201103657
  8. C. Wang, X. Pan, and X. Bao, Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst, Chin. Sci. Bull., 55, 1117-1119 (2010). https://doi.org/10.1007/s11434-010-0076-8
  9. D. Xiang, Y. Qian, Y. Man, and S. Yang, Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process, Appl. Energy, 113, 639-647 (2014). https://doi.org/10.1016/j.apenergy.2013.08.013
  10. Y. Liu, J. F. Chen, J. Bao, and Y. Zhang, Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas, ACS Catal., 5, 3905-3909 (2015). https://doi.org/10.1021/acscatal.5b00492
  11. G. Seo and B. G. Min, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
  12. J. Lefevere, S. Mullens, V. Meynen, and, J. V. Noyen, Structured catalysts for methanol-to-olefins conversion: A review, Chem. Pap., 68, 1143-1153 (2014).
  13. T. A. Semelsberger, R. L. Borup, and H. L. Greene, Dimethyl ether (DME) as an alternative fuel, J. Power Sources, 156, 497-511 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.082
  14. T. Fjermestad, S. Svelle, and, O. Swang, Mechanism of Si island formation in SAPO-34, J. Phys. Chem. C, 119, 2086-2095 (2015). https://doi.org/10.1021/jp510845z
  15. J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, and R. Zhai, Crystallization and Si incorporation mechanisms of SAPO-34, Micropor. Mesopor. Mater., 53, 97-108 (2002). https://doi.org/10.1016/S1387-1811(02)00329-3
  16. S. C. Baek, Y. J. Lee, and K. W. Jun, Effect of water addition on the conversion of dimethyl ether to light olefins over SAPO-34, Korean Chem. Eng. Res., 44, 345-349 (2006).
  17. I. M. Dahl, H. Mostad, D. Akporiaye, and R. Wendelbo, Structural and chemical influences on the MTO reaction: A comparison of chabazite and SAPO-34 as MTO catalysts, Micropor. Mesopor. Mater., 29, 185-190 (1999). https://doi.org/10.1016/S1387-1811(98)00330-8
  18. D. Chen, K. Moljord, and A. Holmen, A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts, Micropor. Mesopor. Mater., 164, 239-250 (2012). https://doi.org/10.1016/j.micromeso.2012.06.046
  19. Y. Gao, S. L. Chen, Y. Wei, Y. Wang, W. Sun, Y. Cao, and P. Zeng, Kinetics of coke formation in the dimethyl ether-to-olefins process over SAPO-34 catalyst, Chem. Eng. J., 326, 528-539 (2017). https://doi.org/10.1016/j.cej.2017.05.158
  20. S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, Dimethyl ether conversion to light olefins over the SAPO-34/ZrO2 composite catalysts with high lifetime, J. Ind. Eng. Chem., 20, 61-67 (2014). https://doi.org/10.1016/j.jiec.2013.04.026
  21. H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 1-9 (2013)
  22. E. Aghaei, M. Haghighi, Z. Pazhohniya, and S. Aghamohammadi, One-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene, Micropor. Mesopor. Mater., 226, 331-343 (2016). https://doi.org/10.1016/j.micromeso.2016.02.009
  23. Y. H. Song, H. J. Chae, K. E. Jeong, C. U. Kim, C. H. Shin, and S. Y. Jung, The effect of crystal size of SAPO-34 synthesized using various structure directing agents for MTO reaction, Appl. Chem. Eng., 19, 559-567 (2008).
  24. J. Li, Z. Li, D. Han, and J. Wu, Facile synthesis of SAPO-34 with small crystal size for conversion of methanol to olefins, Powder Technol., 262, 177-182 (2014). https://doi.org/10.1016/j.powtec.2014.04.082
  25. E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst prepared by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014). https://doi.org/10.14478/ace.2013.1093
  26. S. Soltanali, and J. T. Darian, Synthesis of mesoporous SAPO-34 catalysts in the presence of MWCNT, CNF, and GO as hard templates in MTO process, Powder Technol., 355, 127-134 (2019). https://doi.org/10.1016/j.powtec.2019.07.008
  27. Y. Wang, Z. Wang, C. Sun, H. Chen, H. Li, and H. Li, Performance of methanol-to-olefins catalytic reactions by the addition of PEG in the synthesis of SAPO-34, Trans. Tianjin Univ., 23, 501-510 (2017). https://doi.org/10.1007/s12209-017-0065-y
  28. Q. Sun, Z. Xie, and J. Yu, The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion, Natl. Sci. Rev., 5, 542-558 (2018). https://doi.org/10.1093/nsr/nwx103
  29. C. Sun, Y. Wang, Z. Wang, H. Chen, X. Wnag, H. Li, L. sun, C. Fan, C. Wang, and X. Zhang, Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction, C. R. Chimie., 21, 61-70 (2018). https://doi.org/10.1016/j.crci.2017.11.006
  30. M. Katoh, K. Horiuchi, A. Satoh, K. Aoyagi, and S. Sugiyama, Alkali treatment of commercial silicoaluminophosphate molecular sieves (SAPO-34) enhances the water adsorption and desorption properties, J. Encapsul. Adsorpt. Sci., 9, 149-158 (2019). https://doi.org/10.4236/jeas.2019.94008
  31. X. Liu, S. Ren, G. Zeng, G. Liu, P. Wu, G. Wang, X. Chen, Z. Liu, and Y. Sun, Coke suppression in MTO over hierarchical SAPO-34 zeolites, RSC Adv., 6, 28787-28791 (2016). https://doi.org/10.1039/C6RA02282K
  32. Y. Qiao, M. Yang, B. Gao, L. Wang, P. Tian, S. Xu, and Z. Liu, Creation of hollow SAPO-34 single crystals by alkaline or acid etching, Chem. Commun., 52, 5718-5721 (2016). https://doi.org/10.1039/C5CC10070D
  33. Y. Pan, G. Chen, G. Yang, X. Chen, and J. Yu, Efficient post-synthesis of hierarchical SAPO-34 zeolites via organic amine etching under hydrothermal conditions and their enhanced MTO performance, Inorg. Chem. Front., 6, 1299-1303 (2019). https://doi.org/10.1039/C9QI00245F
  34. D. Verboekend, M. Milina, and J. P. Ramirez, Hierarchical silicoalumino phosphates by Postsynthetic modification: Influence of topology, composition, and silicon distribution, Chem. Mater., 26, 4552-4562 (2014). https://doi.org/10.1021/cm501774s
  35. S. Ren, G. Liu, X. Wu, X. Chen, M. Wu, G. Zeng, Z. Liu, and Y. Sun, Enhanced MTO performance over acid treated hierarchical SAPO‐34, Chin. J. Catal., 38, 123-130 (2017). https://doi.org/10.1016/S1872-2067(16)62557-3
  36. K. H. Choi, D. H. Lee, H. S. Kim, C. S. Park, and Y. H. kim, Effects of acid treatment of SAPO-34 on the catalytic lifetime and light olefin selectivity during DTO reaction, Appl. Chem. Eng., 26, 217-223 (2015). https://doi.org/10.14478/ace.2015.1020
  37. Y. L. Zhu, H. Dai, Y. Duan, Q. Chen, and M. Zhang, Excellent methanol to olefin performance of SAPO-34 crystal deriving from the mixed micropore, mesopore, and macropore architecture, Cryst. Growth Des., 20, 2623-2631 (2020). https://doi.org/10.1021/acs.cgd.0c00002
  38. P. A. Jacobs, E. M. Flanigen, J. C. Jansen and H. van Bekkum, Introduction to Zeolite Science and Practice, 2nd ed., 370-371, Elsevier science, Netherlands (2001).
  39. L. Zhao, J. Gao, C. Xu, and B. Shen, Alkali-treatment of ZSM-5 zeolites with different SiO2/Al2O3 ratios and light olefin production by heavy oil cracking, Fuel Process. Technol., 92, 414-420 (2011). https://doi.org/10.1016/j.fuproc.2010.10.003
  40. D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B. L. Su, and Z. Liu, MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins, Micropor. Mesopor. Mater., 116, 684-692 (2008). https://doi.org/10.1016/j.micromeso.2008.06.001